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hInstituto de F́ısica Teórica, Facultad de Ciencias C-XVI,

28049 Madrid, Spain
iCenter for Theoretical Physics, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge MA 02139, U.S.A.

E-mail: sfranco@princeton.edu, hanany@mit.edu,

krefl@theorie.physik.uni-muenchen.de, jaemo@postech.ac.kr,

Angel.Uranga@cern.ch, dvegh@mit.edu

Abstract: We introduce new techniques based on brane tilings to investigate D3-branes

probing orientifolds of toric Calabi-Yau singularities. With these new tools, one can write

down many orientifold models and derive the resulting low-energy gauge theories living on

the D-branes. Using the set of ideas in this paper one recovers essentially all orientifolded

theories known so far. Furthermore, new orientifolds of non-orbifold toric singularities are

obtained. The possible applications of the tools presented in this paper are diverse. One

particular application is the construction of models which feature dynamical supersymme-

try breaking as well as the computation of D-instanton induced superpotential terms.

Keywords: D-branes, Supersymmetry Breaking, Supersymmetric gauge theory.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007075/jhep092007075.pdf

mailto:sfranco@princeton.edu
mailto:hanany@mit.edu
mailto:krefl@theorie.physik.uni-muenchen.de
mailto:jaemo@postech.ac.kr
mailto:Angel.Uranga@cern.ch
mailto:dvegh@mit.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
0
7
5

Contents

1. Introduction 2

2. Some background on dimers and on orientifolds 3

2.1 Quiver gauge theories and dimer diagrams 3

2.2 Orientifolds 5

2.3 Orientifolding dimers 6

3. Orientifolds from dimers with fixed points 7

3.1 Orientifold rules 7

3.1.1 Example: orientifolds of C
3 9

3.1.2 A comment on tadpoles/anomalies and extra flavors 10

3.2 Geometric action 11

3.2.1 On the orientifolds of C
3 11

3.2.2 Example: orientifolds of the conifold 13

3.2.3 Example: C
2/Z2 × C 15

3.3 The global sign rule and Higgsing 18

3.4 The global constraint for the fixed point signs revisited 18

3.5 Further examples 19

3.5.1 Orientifolds of C
3/Z3 19

3.5.2 Orientifolds of the conifold/ZN 20

3.5.3 Orientifolds of SPP 22

3.5.4 L1,5,2 23

4. Orientifolds from dimers with fixed lines 23

4.1 Generalities 24

4.2 Few examples and the geometric action 24

4.2.1 Line orientifolds of C
3 25

4.2.2 C
2/ZN × C, even N 25

4.2.3 C
2/ZN × C, odd N 27

4.2.4 The geometric action 27

4.3 Further examples 28

4.3.1 General Laba theories 28

4.3.2 Orbifolds of the conifold 29

5. The mirror perspective 31

5.1 Review of the mirror picture 32

5.2 Orientifolds in the mirror system 36

5.3 Classes of orientifold involutions 39

5.3.1 Involutions mirror to orientifold dimers with fixed points 39

5.3.2 Involutions mirror to orientifold dimers with fixed lines 40

– 1 –



J
H
E
P
0
9
(
2
0
0
7
)
0
7
5

5.4 Tadpole cancellation 42

5.5 Calibration 44

6. Applications 45

6.1 Dynamical supersymmetry breaking 45

6.2 D-brane instantons 48

7. Conclusions 49

A. From quivers to dimers and shivers 50

B. Mnemonics: orientifolded Harlequin diagrams 53

C. L
aba theories 56

1. Introduction

The study of D-branes at singularities and the gauge theories on them is interesting for

a variety of reasons. On the one hand, branes at singularities give rise to interesting

extensions of the original AdS/CFT correspondence to theories with a reduced amount

of (super)symmetry [1, 2]. This front has witnessed remarkable progress in recent years:

in the conformal case, with the precision matching of geometric properties of new infinite

families of Sasaki-Einstein metrics and their gauge theory duals [3 – 7]; in the presence of

fractional branes, with the dictionary between geometric properties of the singularity and

strong infrared dynamics in the dual gauge theories [8 – 12].

On the other hand, they provide a natural setup for a bottom-up approach to string

phenomenology, allowing for local constructions of Standard Model-like gauge theories [13 –

15]. Many features of the resulting models depend only on the local structure of the

singularity and can be investigated without a detailed knowledge of the full compactification

manifold.

Orientifolds are an interesting new twist in these constructions, with possibly novel

features. To name a few, they can be used to produce interesting spectra (with new kinds

of gauge factors and representations), they naturally lead to non-conformal theories (with

orientifold charges arising as 1/N corrections), easily lead to supersymmetry breaking in the

infrared (with or without runaway), and lead to models with interesting non-perturbative

superpotential interactions (since orientifolding eliminates superfluous zero modes on cer-

tain D-brane instantons). Thus, the construction of orientifolds of D-branes at singularities

is an interesting direction worth being pursued.

Unfortunately, the techniques to construct such orientifolds are very rudimentary. So

far, only a very limited number of orientifolds of non-orbifold singularities has been con-

structed. Orientifolds of orbifold singularities are in principle amenable to direct construc-

tion using worldsheet techniques, although in practice only a few families of models have
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been constructed. For orientifolds of non-orbifold singularities, partial resolution of ori-

entifolds of orbifolds can be used to derive a few new models, but the approach becomes

non-practical for singularities beyond the simplest ones. A simple classification of orien-

tifolds is also possible for the very restricted subset of singularities that are T-dual to

simple Hanany-Witten (HW) setups [16].

The problem of finding the gauge theory on a set of branes probing an arbitrary toric

CY singularity M was fully solved with the introduction of dimer model methods [17, 18].1

One of the main virtues of dimers is its computational simplicity, in sharp contrast with

pre-existent alternatives such as partial resolution.

Given the striking success of dimer models in the study of branes at singularities, it

is natural to ask how to expand their range of applicability. A natural problem is the

classification of orientifolds of toric singularities. This paper extends the success of dimer

models in the study of toric singularities to their orientifolds, providing a general method

and explicit construction of them.

The organization of the paper is as follows. In section 2, we review some basics of

dimers, quivers and orientifolds. The main results are presented in section 3 and section 4,

where we explain how to obtain orientifolds of arbitrary toric singularities corresponding

to involutions with fixed points and fixed lines, respectively. The mirror perspective is

discussed in section 5. In section 6 we present some applications of our framework and

conclude in section 7. We collect additional related material in appendices.

2. Some background on dimers and on orientifolds

2.1 Quiver gauge theories and dimer diagrams

In this section we give several aspects of quiver gauge theories that live on D3-branes at toric

Calabi-Yau singularities and their construction in terms of dimer diagrams (a.k.a. brane

tilings). Brane tilings give the most efficient construction of such quiver gauge theories and

in the math literature one can find them under the name of periodic bipartite tilings of the

two dimensional plane. For the physical application of dimers to D-branes at singularities,

see e.g. [17]–[30]. A review of the mathematical aspects of dimers can be found in [31, 32].

The gauge theory living on D3-branes probing a toric threefold singularity M is de-

termined by a set of unitary gauge factors (vector multiplets with a unitary gauge group),

chiral multiplets in bi-fundamental representations, and a superpotential given by a sum

of traces of products of such bi-fundamental fields. The gauge group and matter content

of such gauge theories can be encoded in a quiver diagram, with nodes corresponding to

gauge factors, and arrows to bi-fundamentals.2 The superpotential terms are gauge in-

variant operators and hence correspond to closed oriented loops of arrows in the quiver,

however not all such loops in the quiver are superpotential terms.

A powerful tool that encodes all the gauge theory information, including the gauge

group, the matter content and the superpotential, is given by the so-called brane tiling

1For a recent review, see [19].
2It is also possible to encode adjoint fields in quiver diagrams. They are represented by arrows starting

and ending at the same node.
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or dimer diagrams [17, 18]. This is a tiling of T
2 defined by a bipartite graph, namely

one whose nodes can be colored black and white, with no edges connecting nodes of the

same color. There is a dictionary between the tiling data and the gauge theory data that

associates faces in the dimer diagram to gauge factors in the field theory, edges with bi-

fundamental fields (fields in the adjoint in the case that the same face is at both sides of

the edge), and nodes with superpotential terms. The bipartite character of the diagram is

important in that it defines an orientation for edges (e.g. from black to white nodes), which

determines the chirality of the bi-fundamental fields (for example, going clockwise around

white nodes and counter-clockwise around black ones). The color of a node determines the

sign of the corresponding superpotential term, by convention +(−) sign to a white (black)

node.

The inverse procedure, of computing the dimer from the gauge theory data, was dis-

cussed in detail in [21] and is given a new light with a recipe which is provided in section A.

Different techniques allow to systematically construct the dimer diagram (and hence re-

cover the gauge theory) for any given toric singularity [20, 21, 27]. One can also directly

obtain the geometry of the singularity from the information of the dimer diagram (i.e. of

the gauge theory) [21, 22]. A novel way to achieve this is introduced in appendix A.

Mesonic operators and paths in the dimer. A set of objects which are of interest

below are the gauge invariant BPS mesonic operators. These objects, which are elements

of the chiral ring are the simplest gauge invariant operators in the gauge theory. They

are naturally defined in the dimer diagram and encode the interplay between the gauge

theory and the singular geometry. There is a special subset of the mesonic operators which

generate the chiral ring and they are used in the algebraic description of the manifold.

In this paper they are sometimes called “fundamental mesons”. See figure 2 for a simple

example of such fundamental mesons. As discussed since the early days of D-branes at

singularities [33, 34], the geometry transverse to a D-brane can be regarded as the (mesonic)

moduli space of the gauge theory living on its world-volume. The gauge invariant mesonic

operators are then good complex coordinates on the Calabi-Yau singularity at which the

D-branes are located. The full set of mesonic operators, recently studied in [35 – 38], has a

natural realization in the dimer diagram. They correspond to closed oriented paths in the

dimer, with orientation determined by the orientation of the edges.

Since each mesonic operator corresponds to an algebraic function on the singular ge-

ometry, the complete set of gauge invariant mesonic operators provides the complete set of

algebraic functions, which in the spirit of algebraic geometry is an equivalent description of

the geometry itself. The use of mesonic operators as coordinates of the singular geometry

are exploited in section 3.2.

A last important comment concerns the global symmetries of the gauge theory. In

general, gauge theories living on D3-branes at toric singularities3 have a generic U(1)3

global symmetry, associated to the toric action on the geometry.4 This includes the U(1)R

3In the absence of fractional branes this symmetry is not broken by quantum effects. In the presence of

fractional branes, the symmetry is still present but may be broken by quantum effects.
4In addition, it also has a number of baryonic U(1) symmetries which are not used in this paper.
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symmetry, and two global symmetries, which are sometimes called “flavor symmetries” in

the literature. The charges of the different fields under U(1)R can be represented geo-

metrically in the dimer diagram as the angles of the corresponding edges when the dimer

diagram is drawn in the so-called isoradial embedding [21]. The two remaining global sym-

metries are associated to the non-trivial 1-cycles in the two-torus of the dimer diagram.

A possible convention for these two global flavor charges can be as follows: given a gauge

invariant mesonic operator, represent it in the universal cover of the dimer as an open path

between one fundamental domain to another, assign lattice coordinates which specify the

position of each fundamental domain, and assign the lattice difference between the starting

fundamental domain to the ending fundamental domain as the two global flavor charges.

2.2 Orientifolds

In this paper we are interested in studying systems of D3-branes that probe a (toric) CY

singularity M in the presence of orientifold quotients. Namely, we consider the quotient

of the system by the orientifold action

ωσ(−1)FL , (2.1)

where ω reverses the orientation of the worldsheet, while σ is an involution of M i.e. a dis-

crete isometric diffeomorphism, and FL is the left-moving fermion number. The fixed-point

loci of σ are orientifold planes. They are denoted by O−planes or O+-planes, according to

their RR charge (in the convention that the corresponding D-branes carry positive charge).

Usually we work in the covering space description (which is referred to as the parent the-

ory).

In order that the orientifold quotient preserves a common supersymmetry with the

D3-brane system (and the Calabi-Yau geometry), the involution must act on the globally

defined holomorphic 3-form Ω as

Ω → −Ω, (2.2)

In later sections we show how to construct systematically large classes of orientifold

models using a simple set of rules in the dimer diagram, which allow to easily read off the

resulting field theories on the D3-brane world-volume. Before doing this, it is convenient

to review the current state of the art in the literature.

For D-branes at orbifolds, the construction of orientifold theories can be carried out

using CFT techniques. Most of the models studied are compact toroidal orientifolds, see

e.g. [39 – 45]. The study of non-compact singularities has not been extensive, but a few

large classes of such orientifold models are known [46], and related models using brane

constructions can be found e.g. in [47 – 51].

For non-orbifold singularities, there is no systematic construction of orientifold quo-

tients in the literature. The only available tool so far is to start with the orientifold of

a larger orbifold singularity and perform partial resolutions that result in Higgsing the

corresponding theory. This recipe, which generalizes [2] for orientifold singularities, is very

involved in practice, and only a few simple cases have been worked out in [52].
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Figure 1: The two basic examples of possible reflections as applied to the dimer of the conifold:

a) A point reflection. b) A line reflection. The dotted box marks the unit cell of the periodic tiling

and defines the T2 of the dimer. The red crosses mark the fixed points under the point reflection

in the T2, while the red lines mark the fixed lines under the line reflection. Under point reflections

white nodes are exchanged with black nodes, indicating arrow (orientation) reversal in the quiver.

For a class of toric singularities (known as Laba theories in modern terminology [35,

20, 23]), it is possible to perform a T-duality [54, 55] to a Hanany-Witten (HW) setup [16]

and introduce orientifold planes [56 – 58]. Using such tools, several classes of orientifolds of

C
2/ZN×C were constructed in [59] and recovered using CFT tools. Also several orientifolds

of the SPP theory and the conifold were constructed in [52] and confirmed using the partial

resolution method mentioned above.

In this paper we show that dimer diagrams allow a systematic construction of orien-

tifold quotients for arbitrary toric singularities.

2.3 Orientifolding dimers

Dimer diagrams encode both the geometry of toric singularities and the field theories

arising on D3-branes probing the singularity. Hence, we may expect the dimers to be

natural objects to both implement orientifold quotients of the system, and to read off the

effect of the orientifold on the field theory.

Given a system of D-branes at singularities, the orientifold field theory is obtained

from the parent theory by a certain Z2 identification of gauge groups, chiral multiplets

and superpotential couplings (for detailed descriptions see section 3). This implies that

the orientifold operation should be manifest as a Z2 symmetry of the dimer diagram. The

mapping of the faces give the gauge group identifications and the mappings of the edges

give the chiral multiplet identifications while the mapping of the vertices give identifications

of the superpotential monomials.5

5Although sometimes equivalent, this procedure should not be confused with the näıve quotient of a

Z2 symmetric quiver. As explained in section 3 and section 4, various constraints follow from the dimer

construction. Direct orientifolding of the quiver usually leads to theories without interpretation as quotients

by a geometric action and a Chan-Paton action.
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We may consider several kinds of such involutions, with different sets of fixed points.

A given theory may admit several (or none) of such symmetries, corresponding to different

possible orientifolds of the system. We consider two main classes:

• A possible involution corresponds to an inversion of the two T
2 coordinates of the

dimer diagram, as shown in figure 1a for the conifold dimer diagram. This is a

reflection with respect to a point. It has several features:

(i) This involution commutes with the U(1)3 Cartan subgroup of the mesonic flavor

symmetry of the theory: It preserves the angles in the dimer and distances

between different fundamental domains.

(ii) This involution exists for T
2 of arbitrary complex structure, hence we may expect

it to exist for large classes of dimer diagrams.

This kind of orientifold projection is discussed in detail in section 3.

• A second possible involution corresponds to an inversion of one of the T
2 directions.

This is a reflection with respect to a fixed line. An example is shown in figure 1b.

The two features listed above for point reflection are now different:

(i) This involution does not commute with global symmetries and differs from the

action in the case of point reflections. The parent theory has two mesonic flavor

U(1) symmetries. This involution breaks the two mesonic U(1)’s into a U(1)

subgroup which is some linear combination of the two.

(ii) Such a Z2 symmetry exists only for specific T
2 complex structures, hence we may

expect it to exist for a more restricted class of dimers (a necessary requirement

is that the dimer, described in the isoradial embedding in [21], defines a T
2 with

a complex structure that is compatible with the Z2 action).

This kind of orientifolds are a special case of involutions which keep a linear combi-

nation of global U(1) symmetries intact and is presented in section 4.

3. Orientifolds from dimers with fixed points

3.1 Orientifold rules

In this section we consider systems of D3-branes at singularities in the presence of orien-

tifold actions which commute with the U(1)3 subgroup of the mesonic flavor symmetry.

As described above, they should be manifest as Z2 symmetries of the dimer diagram cor-

responding to reflections of the two T
2 coordinates.6 A description in terms of the mirror

geometry is provided in section 5.

6An additional requirement is that these reflections of the dimer diagram must map black to white

nodes and viceversa. Since the color of nodes determines the orientation of arrows (bi-fundamentals), such

reflections produce the orientation revearsal expected from an orientifold. Further, this implies that about

half of the superpotential terms would appear in the orientifolded theory.
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There are four points in the dimer diagram which are fixed under such Z2 actions,

and which correspond to objects (gauge factors or chiral multiplets) of the field theory

which are mapped to themselves under the orientifold action. Using the interpretation of

the dimer diagram as a brane tiling [18, 20], namely as a physical configuration of D5-

branes suspended on open discs with boundaries given by the faces of a web of NS-branes,

such fixed points correspond to orientifold planes in the configuration. This interpretation

introduces a possible sign, which can be assigned to each orientifold plane, which determines

the specific orientifold projection on the vector multiplets or chiral multiplets as they are

mapped to themselves. We refer to them as positive or negative orientifold planes, denoted

as O+, O−. As is argued later, there is a global constraint (related to supersymmetry)

which restricts the number of orientifold planes of same sign to be either even or odd,

depending on the dimer diagram under consideration. This constraint is similar to a global

constraint on signs of orientifold planes as in [60, 61]

Let us set notation by denoting a face with an index a and its image face under the

orientifold action by a′ (a = a′ for faces on top of an orientifold plane). The orientifold

field theory is read out from the parent field theory and the orientifold action according to

the following rules:

• Each face a 6= a′ gives a gauge factor U(Na) (with the face a′ being its image)

• Each face a = a′ on top of an O+ or O− plane gives a gauge factor SO(Na) or

Sp(Na/2), respectively (clearly one needs even Na in the latter case).

• A bi-fundamental chiral multiplet ( a, b) of the parent theory, for b 6= a′, gives a

bi-fundamental ( a, b) of the orientifold theory (with its image ( b′ , a′) ).

• A bi-fundamental chiral multiplet ( a, b′) of the parent theory gives a bi-

fundamental ( a, b) of the orientifold theory. Similarly a bi-fundamental

( a′ , b) gives a ( a, b).

• An edge with a = a′ leading to bi-fundamentals ( a, a′) on top of an O+ or O−

plane, is projected down to a representation a or a, respectively. Similarly

bi-fundamentals ( a′ , a) lead to the conjugate representations, a or ,

respectively.

• In some cases additional (anti)fundamental fields are added in order to cancel chiral

anomalies. An example of such a case is given in section 3.2.2.

• The superpotential of the orientifold theory is obtained from the parent superpo-

tential by projecting out half of the terms and replacing in the surviving terms the

parent fields by their images under the orientifold projection.

The two rules providing the orientifold projection on elements mapped to themselves

under the orientifold action are not independent. They are related to each other by remov-

ing/adding an edge on top of an orientifold plane, see section 3.3. This operation is well

known and corresponds to Higgsing/unHiggsing in the parent theory [18].
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3.1.1 Example: orientifolds of C
3

Explicit examples of orientifold field theories obtained using this procedure are described

in coming sections, but it may be convenient to illustrate the concepts with a simple

example. Let us consider the set of all possible point reflection orientifolds for the system

of D3-branes on C
3. The dimer diagram is shown in figure 2. There is one orientifold plane

on top of the face (denoted a in the figure), while the other three (b, c, d in the figure) are

on top of edges. The different cases are as follows:

(i) Consider the configuration where the signs of the orientifold planes are chosen to be

(a, b, c, d) = (+ − −−). Using our rules above, the gauge group projects down to

SO(N) while each of the three chiral multiplets projects down to the antisymmetric

(adjoint) representation. There are two superpotential terms which are inherited

from the parent theory and give rise to a commutator term. The resulting theory

corresponds to the N = 4 supersymmetric orientifold theory with gauge group SO(N)

obtained from D3-branes in flat space sitting on top of an O3− plane. Denote the

three antisymmetric fields by A1,2,3, then the projected superpotential is given by

W = A1A2A3. (3.1)

(ii) Similarly, the configuration with (a, b, c, d) = (− + ++) reproduces the orientifold

with N = 4 supersymmetry and a gauge group Sp(N/2), obtained by placing N/2

D3-branes on top of an O3+ plane. The superpotential is as in Equation (3.1) with

the antisymmetrics replaced by symmetric representations.

(iii) The choices (a, b, c, d) = (+−++), (++−+), (+++−) lead to an SO(N) gauge the-

ory, one chiral multiplet in the antisymmetric (adjoint) representation, and two chiral

multiplets in the symmetric representation. Denote the adjoint representation by Φ

and the two fields in the symmetric representation by S1,2. Then the superpotential

is

W = S1ΦS2. (3.2)

This reproduces the N = 2 supersymmetric orientifold field theory living on N D3-

branes in C
3 that sit on an O7+ plane.

(iv) Similarly the choices (a, b, c, d) = (−+−−), (−−+−), (−−−+) lead to the N = 2

supersymmetric Sp(N/2) field theory that lives on a stack of N D3-branes sitting on

top of an O7− plane.

In cases (iii) and (iv) the direction transverse to the O7-plane is related to the location

of the adjoint chiral multiplet (− sign for case (iii) and + sign for case (iv)). The relation

between the geometric action of the orientifold and the sign choices in the dimer is discussed

in section 3.2.

The 4 cases above refer to 8 out of 16 possible orientifold sign assignments. Other

sign choices, with an even number of orientifold planes of the same sign, do not lead to

consistent supersymmetric orientifolds of D3-branes on C
3. Hence we encounter for the first

– 9 –
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time a global constraint that seems to constrain the set of possible consistent orientifolds.

In further examples it turns out that this is a general feature of orientifold dimers. For a

given dimer diagram, consistent supersymmetric orientifolds are obtained for sign choices

that have a fixed parity for the number of orientifold planes with the same sign. Henceforth,

we refer to the even/odd character of the number of orientifold planes of the same sign as

the ‘sign parity’ of the configuration. We are now ready to state the Sign Rule. The sign

parity is determined by the number of the superpotential terms NW in the parent theory

(i.e. the number of nodes in the unit cell of the parent dimer diagram) according to:

Sign rule: the sign parity of a given orientifold is equal to NW /2 mod 2. That is, the

number of orientifold planes with the same sign is even(odd) for NW /2 even(odd).

This statement is supported in section 3.4, after studying the orientifold action on

mesonic operators and using observations made there. NW is even for every toric singu-

larity. From the dimer point of view, this is a result of the bipartiteness of the dimer

graph. An alternative way to determine the correct sign parity that reproduces all the

consistent orientifolds of a given dimer diagram uses the Higgsing/unHiggsing procedure,

see section 3.3.

3.1.2 A comment on tadpoles/anomalies and extra flavors

Using the above rules one can construct large classes of orientifold field theories, as we

describe in examples below. An important point is that the resulting field theories are

in general chiral (even in cases where the parent theory is non-chiral, see the following

examples) and have potential gauge anomalies. As usual (see [62] for the orbifold case), they

are canceled as a consequence of cancellation of RR tadpoles (with mixed U(1) anomalies

involving a Green-Schwarz mechanism [46]). The tadpole conditions can be analyzed by

following the procedures in [63, 64]. This is discussed in some detail in the mirror geometry

perspective in section 5. For the rest of this section and the next we ignore this issue and

assume that a suitable choice of ranks for the gauge groups, and a possible addition of

extra ingredients like non-compact D7-branes leading to fundamental flavors, are sufficient

to render the systems consistent. It is straightforward to determine the choice that leads

to a consistent theory with a simple gauge theory analysis. In some cases, more than one

of these alternatives are possible.

Let us give a more explicit description of the introduction of extra D7-branes and

fundamental flavors. D7-branes wrapped on holomorphic 4-cycles passing through the sin-

gularity can be added in the parent theory as described in the appendix of [65]. The

D7-branes are naturally associated to the bi-fundamental edges in the dimer. Namely,

for each bi-fundamental Xij it is possible to introduce a D7-brane, whose D3-D7 open

string sectors lead to flavors Q̃i, Qj in the representations i, j , respectively, with

a cubic superpotential coupling Q̃iXijQj . In the orientifold theory, cancellation of tad-

poles/anomalies may require the introduction of D7-branes associated to bi-fundamentals

mapped to themselves under the orientifold action. In such situation, the gauge factors

i, j are identified, the flavors Q̃ are identified with the flavors Q, and the bi-fundamental

Xij projects down to a two-index tensor representation X. The superpotential is XQQ.

– 10 –



J
H
E
P
0
9
(
2
0
0
7
)
0
7
5

It is important to point out that the addition of D7-branes may break some of the global

symmetries of the parent theory preserved by the orientifold quotient.

3.2 Geometric action

In the previous subsection we provide tools to construct different orientifold quotients of a

given system of D3-branes at singularities. These correspond to quotients ωσ(−1)FL with

different geometric actions σ on the CY manifold. In this subsection we describe how to

relate σ to the corresponding orientifold quotient which is given by the choice of signs in

the dimer diagram.

Our strategy is to propose a set of rules for computing σ by looking at a series of

examples of increasing complexity. As a corollary, we derive the sign rule in section 3.4.

The discussion shows a clear correlation between the sign rule and the condition on having

supersymmetry.

In order to compute the action of the orientifold on the parent geometry, we describe

the geometry as the moduli space of vacua for the parent theory. It is enough to consider

the orientifold action on the set of mesonic generators of the moduli space. The action

on other mesonic operators is then inferred by the way they are represented in a product

form. For a systematic discussion of mesonic operators and dimer diagrams, see [35 – 38].

Mesonic operators are transparent to the action on Chan-Paton (gauge) indices, since all

fundamental indices are contracted with anti-fundamental indices. This implies that sign

choices which differ by an overall flip of the Chan-Paton projection should correspond to

the same orientifold action. As mentioned in section 2.3 the orientifold quotient preserves

the mesonic flavor symmetries. As a result this orientifold action usually corresponds at

most to picking up a ±1 sign. This is interpreted as the transformation of the corresponding

coordinate in the geometry under the orientifold action.

We begin with our the discussion with the simplest example — the orientifold of

M = C
3

3.2.1 On the orientifolds of C
3

The gauge theory for C
3 has N = 4 supersymmetry. The mesonic operators, which corre-

spond to the coordinates of the geometry are the adjoint fields7

x = Φ1, y = Φ2, z = Φ3. (3.3)

The fundamental dimer cell and the fixed points under the involution are shown in

figure 2.

As described in section 3.1.1, the gauge group and three adjoints are mapped to them-

selves. The possible orientifold sign choices and the resulting spectra are summarized in

the first three columns of table 1, where signs for the four orientifold planes are ordered in

a clockwise fashion (abcd). Henceforth this ordering convention will be used throughout

the paper. The action on the mesons is given in the fourth column of table 1. The fifth

column denotes the number of supersymmetry of the theory at each row.

7We consider only single-trace operators, and the trace is implicit in the discussions.
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Figure 2: Left: The dimer of C3 and the four fixed points under the point reflection. Right: The

three fundamental mesons (edges crossed by the blue lines) assocciated to coordinates of C3.

Sign choice Gauge group Matter σ(x, y, z) N

(− + ++) Sp 3 (−x,−y,−z) 4

(+ −−−) SO 3 (−x,−y,−z) 4

(− + −−) Sp 1 + 2 (+x,−y,+z) 2

(+ − ++) SO 2 + 1 (+x,−y,+z) 2

Table 1: Some possible orientifolds of the C3 theory. Additional (but obviously isomorphic)

examples are obtained by permuting the signs of the b, c, d orientifolds and the geometric actions

on x, y, z, giving one of the gauge theories in this table.

As expected the mesons are mapped to themselves under the Z2 action but with

possible signs. We propose the following rule to determine the sign of a meson under the

orientifold action:

Rule 1: a meson passing through two orientifold planes, picks up a sign equal to the

product of the signs of these orientifold planes: It is even (odd) if the two orientifold

planes have equal (opposite) sign.

This rule produces the geometric actions shown in the fourth column of table 1. This

agrees with the geometric actions of O3-planes (the N = 4 theories) and the geometric

actions of O7-planes (N = 2 theories), which lead to the orientifold field theories with

spectra given in the second and third column.

The holomorphic 3-form which is preferred by the D3-branes is given by

Ω = dx ∧ dy ∧ dz. (3.4)

Indeed the condition for unbroken supersymmetry in Equation (2.2) is consistent with

the geometric actions in table 1. Furthermore, configurations with an even number of

orientifold planes of equal sign would lead to geometric actions where two coordinates

flip sign, hence leaving Ω invariant. Such orientifolds (which have either O9-planes or

O5-planes) do not preserve any common supersymmetry with the D3-branes. Hence, as

indicated above, we see a close relation between the sign rule and supersymmetry.

In fact Ω transforms as the meson xyz or the meson xzy, both are odd under the Z2

action. These mesons are special, since they are terms in the superpotential. Such mesons
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Figure 3: Left: The fundamental cell of figure 1 for the conifold with fixed-points of the orientifold

action. Right: The mesonic operators.

always exist in more general theories. It is a general fact that in order to have a supersym-

metric orientifold, mesons in the superpotential must be odd under the orientifold action.

Formally, this follows from the fact that W is a complex quantity which is determined by

Ω in some string theory constructions.8 Furthermore, mesons in the superpotential can be

written as the product of all the GLSM fields in the toric description [25]. This product

transforms under the orientifold in the same way as the holomorphic 3-form, as one can

check directly in many examples. This is because Ω can be expressed in the GLSM descrip-

tion as the contraction of the holomorphic n-form Ωn = dp1 ∧ · · · ∧ dpn with the (n − 3)

Killing vectors iKa
generating the (C∗)n−3 holomorphic quotient symmetries

Ω = iK1 · · · iKn−3Ωn. (3.5)

We can promote these observations to a new rule:

Rule 2: a mesonic operator appearing as a superpotential term (surrounding a node in

the parent dimer diagram) is odd under the orientifold action.

More generally, a mesonic operator defined by a homologically trivial loop in the dimer

diagram picks up a sign given by (−1)k, where k is the number of nodes it encloses. Since

the total number of nodes in the dimer is even, this sign is independent of the choice of

the enclosed region.

3.2.2 Example: orientifolds of the conifold

As the next example, let us consider the conifold singularity. The corresponding dimer

diagram is illustrated in figure 3.

As for the C
3 example, the number of superpotential terms is 2 and therefore, using

the sign rule, for this configuration the total number of orientifold planes with equal sign

is odd. Using the Higgs mechanism one can show that the sign rule for both these theories

should be the same. This is discussed in section 3.3. Some possible orientifolds are shown

in table 2. Other sign choices lead to isomorphic models related by a relabeling of fields

and mesons and are not shown in the table.

8 In the mirror viewpoint the coefficients of the superpotential are given by the integral of e(J+iB) over

a disk worldsheet instanton. Mirror symmetry exchanges e(J+iB) and Ω and hence the connection between

terms in W and the holomorphic form Ω.
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Charges Gauge group Matter σ(x, y, z, w)

(+ − ++) U + + 2 + 8 (+x,−y,−z,+w)

(− + −−) U + + 2 + 8 (+x,−y,−z,+w)

Table 2: Two examples of orientifolds of the conifold theory. Other sign choices lead to isomor-

phic models related by permutations of x, y, z, w. We have added eight chiral multiplets in the

fundamental or respectively anti-fundamental representation to make the theory anomaly free.

In both cases, a set of 8 (anti)fundamentals are added to cancel the chiral anomaly

associated with the + ( + ) combination. In a string theory construction

with D3 branes on the conifold this follows from uncanceled contributions of the orientifold

planes to tadpoles of RR fields localized at the singularity. They are cancelled by the

introduction of additional D7-branes, which contribute additional fields from the D3-D7

sector. We come back to this point in the mirror perspective in section 5.4.

We can write down the superpotential following the discussion in section 3.1.2. Let

us denote the different fields by A,S, S̄1, S̄2, Qi, i = 1 . . . 8. Then the superpotential of the

first model takes the form

W = SS̄1AS̄2 − S̄1QiQi. (3.6)

where we have chosen to introduce the flavors by using the D7-brane naturally associated

to S1 (there exist other consistent choices). A similar superpotential exists for the second

model.

In order to obtain the geometric action, let us consider the basic mesonic operators in

the parent theory, given by

x = X
(1)
12 X

(1)
21 , y = X

(2)
12 X

(2)
21 , z = X

(1)
12 X

(2)
21 , w = X

(2)
12 X

(1)
21 , (3.7)

which in this case are in one-to-one correspondence with zigzag paths of the dimer and

fulfill the usual relation xy = wz.

Using Rule 1 we can infer the geometric actions on x, y, z, w, as shown in the last

column of table 2. The holomorphic 3-form can be locally written as

Ω =
dx ∧ dy ∧ dz

z
. (3.8)

Hence it is odd under the orientifold action, as expected from a supersymmetric orientifold

quotient. One can show that this directly follows from the sign rule (global constraint on

sign parity).

Orientifolds of the conifold can be studied using the T-dual HW setup, which involves

D4-branes suspended between one NS and one NS′-brane. It is possible to orientifold this

configuration by introducing O6-planes: one is on top of the NS-brane (leading to an N = 2

subsector), namely two chiral multiplets in conjugate two-index representations ( or

depending on the O6-plane charge); the second is on top of the NS′-brane, which cuts

it in two halves with opposite signs (leading to fields in + or + ). The

latter configuration has been dubbed a ‘fork’ [47] due to its shape as a musical fork and was
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Figure 4: Left: C2/Z2 ×C dimer with fixed-points. Center and right: The mesonic operators. We

show two equivalent representations w and w′′ of the same meson, and an intermediate path w′.

used in [52]. Cancellation of world-volume tadpoles on the NS′ requires the introductions

of eight half-D6 branes [53], which lead to additional flavors. Notice that any orientifold

quotient of this configuration necessarily contains one (and only one) fork. The geometric

action of the orientifold quotient in these models were determined in [52], using the partial

resolution method.

Our construction in this section reproduces the orientifold field theories obtained from

the HW dual and which contain a fork configuration. The appearance of just one fork

follows from the global constraint on sign parity. The geometric action on mesons as in

table 2, obtained from the orientifold, is in agreement with the geometric action in the dual

HW setup [52].

3.2.3 Example: C
2/Z2 × C

Let us consider orientifolds of the C
2/Z2 × C orbifold. The dimer diagram with the orien-

tifold planes and the basic mesons are shown in figure 4. They satisfy the relation xy = w2,

with z free. There is also a meson u corresponding to a closed loop around a node, which

is not explicitly shown since it is not basic. It can be expressed in terms of the others as

u = zw.

This example illustrates an additional situation that we might encounter. Our rules

above allow to read the orientifold action on mesons that pass over orientifold planes and

hence are mapped to themselves, such as x, y and z, or the meson corresponding to a

superpotential term u. In this example, there is a new type of meson w that is not mapped

to itself but rather to another path that is labeled w′′.

The path w can be transformed into its image w′′ using some number of F-term re-

lations (in this case one). At some intermediate stage(s), labeled w′ in this example, the

path can go over two orientifold planes. This pair of orientifold planes can be in any of

the combinations contemplated by rule 1. The total sign picked by w is the product of

signs dictated by rule 1 for each pair of nodes that are transversed at intermediate steps,

times one minus sign for each F-term equation used coming from rule 2. Another way

of interpreting this procedure is that we can deform both w and w′′ into w′ by moving

them to the right and left, respectively. Both paths become identical and the sign can be

determined using rule 1. The combined displacements of w and w′′ to an intermediate path

can be viewed as the total displacement from w to w′′, which involves one F-term equation.

This reasoning applies to any other theory. We can summarize our conclusions as:
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Charges Gauge group 2-index tensors σ(x, y,w, z)

(− + −+) Sp × Sp 1 + 2 (+x,+y,+w,−z)

(− + +−) Sp × SO 1 + 2 (−x,−y,+w,−z)

(−−−−) Sp × Sp 1 + 2 (+x,+y,−w,+z)

(−− ++) Sp × SO 1 + 2 (−x,−y,−w,+z)

Table 3: Some possible orientifolds of the C2/Z2 ×C theory. Other choices amount to overall sign

flips. The indices 1 and 2 refer to the adjoint fields of the parent theory. Only the two-index tensor

representations in the matter sector are listed. There are 2 additional bi-fundamental fields.

Rule 3: Consider a mesonic operator corresponding to a path which is not invariant

under the orientifold action, but mapped to another path representing the same mesonic

operator. The two paths define a strip9 enclosing 2k nodes, and orientifold planes, of

charges qi = ±1. Then, the sign picked up by the operator is
∏

i qi (−1)k.

Note that rule 3 is not an additional independent rule, but a combination of rules 1

and 2 in a practical form to deal with mesons that are not mapped to themselves.

The sign rule on orientifold charges implies in this case that there is an even number of

orientifold planes with equal charge. Different orientifold models of this system are shown

in table 3. Other choices amount to overall sign flips, corresponding to overall flips of the

Chan-Paton actions.

It is straightforward to check that sign(u) = sign(z)sign(w) = −1 in all cases, in

agreement with rule 2.

To write down the superpotential e.g. for the first model let us introduce the notation

S1, S2,X
(1,2) for the two symmetric fields and the two bi-fundamental fields, and note that

the four terms in the parent theory are mapped to two in the orientifolded theory. We get

W = S1X
(1)X(2) − S2X

(2)X(1). (3.9)

Similar superpotentials can be written for the other three models. D3-branes at C
2/Z2×C

can be T-dualized to a Type IIA configuration with D4-branes suspended between two NS-

branes. The introduction of orientifold planes in these configurations was described in [58],

and the geometric actions in the Type IIB geometry have been constructed in [66, 59] using

CFT techniques. Hence we can compare our results with these constructions.

In fact the four models in table 3 correspond to orientifolds in these references, where

in Type IIA language the different projections follow from the relative orientation of the O-

planes and the two NS-branes. The four models correspond to: two O6-planes with positive

charge, two O6-planes with opposite charges, two O6′-planes with opposite charges and

two O6′-planes with positive charge, respectively. Also, the geometric actions in table 3,

obtained using our rules for orientifold action on mesons, agree with the ones previously

derived using other methods [66, 59]. Note that in configurations with O6′-planes, the

vector multiplet and the adjoint chiral multiplet for each group have opposite projections.

9In fact, they define two stripes. Either of them can be used. In the next section we discuss how this

freedom can be used to constrain sign parity.
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Figure 5: Left: C2/Z2 × C dimer with fixed-points for a different orientifold action. Right: The

mesonic operators.

Charges Gauge group 2-index tensors σ(x, y,w, z)

(+ + ++) U 1Adj. + 2 + 2 (+x,+y,+w,−z)

(+ + −−) U 1Adj. + + + + (−x,−y,+w,−z)

(+ − +−) U 1Adj. + + + + (+x,+y,−w,+z)

(+ −−+) U 1Adj. + 2
(

+
)

+ 16 (−x,−y,−w,+z)

Table 4: Some possible orientifolds of the C2/Z2 × C theory.

This is nicely reproduced by the dimer, and is ultimately implied by the global constraint

on orientifold signs.

Other orientifolds of C
2/Z2×C. We can consider other possible orientifolds of C

2/Z2×

C which are obtained by a different embedding of the dimer diagram into the T
2. Figure 5

shows the dimer diagram with the orientifold planes and the basic mesons. Recall that we

also have the meson u corresponding to a closed path around a node.

Our rules above allow to read the orientifold action on mesons. We use rule 3 for z.

Table 4 shows the spectrum and geometric action for some choices of signs.

Once again, we can immediately verify that sign(u) = sign(z)sign(w) = −1 in all

cases. Other choices amount to overall flip of the signs, and thus produce the same ge-

ometric actions. As in the conifold example, we have added fundamental fields when

necessary to cancel the chiral anomaly. This corresponds to the addition of non-compact

D7-branes.

Once again, these models can be T-dualized to Hanany-Witten Type IIA setups. In

this case, the NS-branes are on top of O6-planes. These theories have been studied from

that perspective in [66, 59, 52] and correspond to having two O6-planes with positive

charge, two O6-planes with opposite charges, two forks and two oppositely oriented forks,

respectively.

The superpotential for the first model can be written as follows: Denote the fields in

the adjoint and two-index tensors and conjugates as Φ, S1,2, S̄1,2. Then we have

W = ΦS1S̄1 − ΦS2S̄2, (3.10)

with similar terms for the other model that has no fork. The superpotential for mod-

els with extra fundamental flavors can be calculated as described in section 3.1.2, giving
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contributions of the form

W = S̄1QiQi + S̄2Q
′
iQ

′
i, (3.11)

where we have chosen to introduce the flavors by using 8 D7-branes associated to S̄1 and 8

to S̄2. Other consistent choices are possible, whose superpotentials are obtained similarly.

3.3 The global sign rule and Higgsing

It is illustrative to consider how the above construction of orientifold theories interplays

with the Higgs mechanism. We argue below that using the Higgs mechanism one can fix

the global constraint on the number of orientifold planes of equal sign in arbitrary dimer

diagrams. Another simpler derivation for the prescription is described in section 3.4.

Higgsing in the parent theory corresponds to removal of edges associated with the

fields acquiring vevs in the dimer diagram [18]. In the presence of orientifold quotients,

removal of an edge should be accompanied by the removal of its orientifold image, since

both correspond to a single field in the orientifold theory. There are two important points

to consider in this procedure:

• If the removed edge sits on top of an orientifold plane, the orientifold plane preserves

its sign, and ends up on top of a face of the dimer, see figure 6a. This is consistent

with the orientifold rules in section 3.1 since a U(N) gauge factor breaks down to an

SO(N) by Higgsing with a chiral multiplet in the representation, and to Sp(N/2)

with a field in the representation.

• After the edge removal, one may get bi-valent nodes involving an edge on top of an

orientifold plane as shown in figure 6b. Bi-valent nodes represent quadratic terms

(i.e. mass terms) in the superpotential. Given the Z2 symmetry of the parent theory,

the bi-valent nodes come in pairs. Integrating out the massive fields corresponds

to collapsing the bi-valent nodes [18] but the orientifold plane flips sign. This is

consistent with the field theory result, since the edges not on top of the orientifold

plane correspond to + , and only one of these combinations becomes massive

with the two-index tensor on top of the orientifold plane.

An example of the first point appears in Higgsing the orientifolds of the conifold to

orientifolds of C
3. An example of the second point appears in Higgsing the orientifolds of

C
3/(Z2 × Z2) to orientifolds of the SPP theory.10

The above rules allow to fix the global constraint on the number of orientifold planes of

equal sign in arbitrary dimer diagrams, by Higgsing them down to a known dimer diagram.

Some examples are discussed in following sections.

3.4 The global constraint for the fixed point signs revisited

In all the models considered in the previous sections, we are able to determine which

parity of the fixed point signs leads to supersymmetric orientifolds. This is consistent with

10For the field theory discussion we refer to [52].
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Figure 6: a) Behavior of orientifold plane (red cross) upon removal of edges. b) Behavior of

orientifold plane upon integrating out matter.

(un)Higgsing to known theories. It is in principle possible, although generally much more

involved, to use one of these approaches for a generic toric singularity.

The transformation rules of mesonic operators under the orientifold action, derived in

the previous section, offer a simpler method for fixing the signs. For an arbitrary dimer,

the parity of orientifold plane signs can be determined by requiring consistency among the

sign assignments that follow from the three rules.

With a reasoning similar to the one used to arrive at rule 3, we can derive a compact

principle fixing the sign parity. Take any mesonic operator and move it once around the

torus until it comes back to itself. It picks up a sign given by

(−1)SP (−1)#F = (−1)SP (−1)NW /2, (3.12)

where SP denotes the overall sign parity and F the number of F-term relations required to

move the path once around the torus. In detail, when moving around the torus, the path

representing the meson passes over all the orientifold planes and pick their signs. This gives

rise to the (−1)SP factor in (3.12). The (−1)#F factor comes from the F-term relations

required to move the path around the torus and return to its original position. All the NW

superpotential terms are used in this process. Since every field in the quiver is present in

exactly two superpotential terms, we take care of all of them by using the F-term equations

for NW /2 fields. Since the meson should not pick up a sign in this process, (3.12) has to

be equal to one. Hence, we conclude that the sign parity is equal to the parity of NW /2.

This is precisely the sign rule announced in section 3.1.

3.5 Further examples

3.5.1 Orientifolds of C
3/Z3

Let us consider C
3/Z3 which can be also seen as the orbifold point of OP2(−3), i.e. the

complex cone over dP0. The dimer and the fixed-points under the point-reflection involution

as well as the mesonic operators corresponding to the coordinates of the geometry are

depicted in figure 7. Under the involution one gauge group stays fixed while two are

identified. Three bi-fundamentals are mapped to themselves while the remaining ones are

identified. The holomorphic 3-form survives from the parent C
3 theory. The mesonic
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Figure 7: Left: The dimer of the orbifold C3/Z3 with fixed-points. Right: The mesonic operators.

Charges Gauge group Matter

(+ + −+) Sp × U 3 2 + 3 ( , )

(− − +−) SO × U 3 2 + 3 ( , )

(+ −−−) Sp × U 1 2 + 2 2 + 3 ( , )

(− + ++) SO × U 2 2 + 1 2 + 3 ( , )

Table 5: Some possible N = 1 orientifolds of C3/Z3.

operators show identical behavior as in C
3, i.e. they have only one common fixed-point.

Hence, the same considerations apply, i.e. only an odd sign parity leads to an N = 1

supersymmetric theory. Some possible sign choices and the resulting theories are listed in

table 5. The orientifolds of the first and second model of table 5 are closely related to the

orientifold projection introduced in [41], see e.g. [67, 68, 13, 69] for its construction using

D3-branes.

All the spectra shown in table 5 are anomalous unless the ranks of the gauge groups

are restricted or additional (anti)fundamental matter is added. It is instructive to discuss

this example in more detail, since similar considerations apply to the rest of the models

in the paper. Contrary to what happens for the models we have discussed so far, there is

more than one way to render them consistent. For example, for the first model in table 5

with gauge group Sp(n1) × U(n2), the most general anomaly-free spectrum reads

3 2 + 3 ( , ) + 3 (4 − n1 + n2) , (3.13)

where a negative number of is understood as a positive number of . All these choices

translate to branes wrapping compact or non-compact cycles. It would be interesting to

reproduce this constraint along the lines of [63].

3.5.2 Orientifolds of the conifold/ZN

In this section we consider orientifolds of certain orbifolds of the conifold, introduced in [54],

and corresponding to Laaa geometries with a = N . The tools should be familiar by now,

so our discussion is sketchy.

Let us start with the Z2 orbifold of the conifold obtained by the following geometric

action:

x → x, y → y, z → −z, w → −w. (3.14)
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Figure 8: Left: Dimer of the conifold/Z2. Right: The mesonic operators.

1

1

11

1

1

2

2

2

2

3

3

N

N

N

N

N+1

N+1

N+1

N+1

N+2

N+2

N-1

N-1

2N

2N

2N

2N

2N

2N

2N-1

2N-1

2N-1

2N-1

2N-2

2N-2

Figure 9: Top: Dimer of the conifold/ZN for odd N . Bottom: For even N .

This orbifold has been discussed in detail in [93]. The holomorphic 3-form Ω of the conifold

is invariant under this orbifold action as can be inferred from (3.8). The dimer and the

mesonic operators are drawn in figure 8. The basic structure of mesonic operators and

their relation with the orientifold points is similar to that of the conifold. The sign parity

of the model is positive, though. Hence the number of negative orientifold planes is even.

The structure of the possible orientifold models is as follows. The resulting gauge group

is U(N1)×U(N2) and there are two antisymmetric and two symmetric representations (two

among the four are conjugated). The chiral combinations require additional flavors, as in

fork configurations. This can be obtained upon introduction of extra non-compact branes

in the system. The models can be described using a T-dual HW setup with two NS and two

NS′-branes. The non-chiral models correspond to HW models with e.g. the NS-branes on

top of O6-planes (of different possible signs) and the NS′-branes mapped to each other by

the orientifold action. The chiral models correspond to HW models with the NS′-branes on

top of O6-planes. These O6 planes are split in halves, and lead to a chiral matter content

as in a fork configuration. The NS-branes are mapped to each other.

It is easy to generalize this to any ZN orbifold of the conifold. The dimers for odd as

well as for even N are given in figure 9. Some basic possible orientifolded theories are given
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Charges G. g. Matter

(+ + +−)
∏N

i=1 U(Ni) 1 + 1 + N + N + 8 N

(+ −−−)
∏N

i=1 U(Ni) 1 + 1 + N + N + 8 1

(+ + ++)
∏N

i=1 U(Ni) 1 + 1 + N + N

(+ − +−)
∏N

i=1 U(Ni) 1 + 1 + N + N + 8 1 + 8 N

Table 6: Basic N = 1 orientifolds of the conifold/ZN . The first two rows correspond to orbifolds

with odd N , while the last two rows correspond to orbifolds with even N .

xz w w

y

Φ3

X31

X13X23

X32

X21

X12

1

1

1

2

2

2

3

Figure 10: Dimer of SPP and the mesonic operators.

Charges Gauge group Matter σ(x, y, z, w)

(+ + ++) SO × U 1 + 2 + 2 (+x,+y,+z,−w)

(−−−−) Sp × U 1 + 2 + 2 (+x,+y,+z,−w)

(−− ++) SO × U 1 + 2 + 2 (−x,−y,+z,−w)

(+ + −−) Sp × U 1 + 2 + 2 (−x,−y,+z,−w)

(+ − +−) SO × U 1 + 2 + 2 + 8 2 (+x,−y,−z,+w)

(− + −+) Sp × U 1 + 2 + 2 + 8 2 (+x,−y,−z,+w)

Table 7: Some possible orientifolds of the SPP.

in table 6. For all these models we have N factors of gauge group U(Ni) with i = 1 · · ·N

and bi-fundamentals
∑N−1

i=1 ( i, i+1)+( i, i+1). The remaining matters are specified

in table 6. The different geometric action are straightforwardly obtained from our rules.

3.5.3 Orientifolds of SPP

As another example, consider the real cone over the first member of the Laba family, L1,2,1.

This is also known as the complex cone over the suspended pinch point, for short SPP.

The dimer and the mesonic operators corresponding to the coordinates of the geometry

are shown in figure 10.

Using the rules one can easily extract the spectra and action on coordinates for various

sign choices as listed in table 7. In addition to the fields listed, all the models contain a

( 1, 2) + ( 1, 2) pair. The last two models also require the addition of antifunda-

mentals to cancel gauge anomalies.

Hence, we easily recover the orientifolds derived via field-theory techniques in [52].

It is straightforward to use our rules to systematically construct orientifolds of general

Laba theories. Some technical details of these theories can be found in appendix C. Since
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Figure 11: Dimer diagram for L1,5,2.

Charges 2-index tensors

(+ + +−) 1 + 3 + 5 + 5

(+ + −+) 1 + 3 + 5 + 5

(+ − ++) 1 + 3 + 2 5

(− + ++) 1 + 3 + 2 5

Table 8: Two-index representations for some possible orientifolds of the L1,5,2 theory. Other

choices amount to overall sign flips.

the basic ingredients have already been discussed, we refrain from a detailed classification

and instead proceed to the construction of new examples.

3.5.4 L1,5,2

Finally, in order to illustrate the power of our methods, we close this section with an

example that was not amenable to the techniques previously available in the literature.

Figure 11 shows the dimer diagram for L1,5,2 [20].

The parent theory has 10 superpotential terms. Hence, the sign rule determines that

the sign parity must be odd. The resulting gauge group is U(n1) × U(n3) × U(n5), with

matter content

( 1, 3)+( 1, 3)+( 1, 5)+2 ( 3, 5)+( 3, 5)+R̄1 +S3 + T̄5 + V̄5. (3.15)

R̄1, S3, T̄5 and V̄5 are two-index tensor representations determined by the signs of the

orientifold planes.

As in previous examples, gauge anomalies are canceled by constraining the ranks of

gauge groups and adding (anti)fundamental fields.

4. Orientifolds from dimers with fixed lines

After discussing in detail the large class of involutions preserving the mesonic U(1)2 flavor

symmetries, in this section we consider a different type of involution preserving a linear

combination of them. As pointed in section 2.3, they are described in the dimer diagram

as symmetries which leave fixed lines.

– 23 –



J
H
E
P
0
9
(
2
0
0
7
)
0
7
5

a) b)

Figure 12: The two possible unit cell geometries for orientifolds with fixed lines: rectangle and

rhombus.

4.1 Generalities

Orientifolds with fixed lines are obtained for dimer diagrams which are invariant under a

line reflection.11 Symmetries with fixed lines exist for dimer diagrams with unit cell of two

possible kinds, as shown in figure 12. As in figure 12a, the unit cell can be a ‘rectangle’,

in which case it has two independent orientifold lines. Or as in figure 12b it can be a

‘rhombus’, in which case there is a single orientifold line.12 Using the interpretation of

the dimer diagram as a brane tiling of NS-branes with suspended D5-branes [18, 20], such

orientifold lines are physical orientifold planes. Hence, for the case in figure 12a we can

consider independent sign choices (charges) for the two orientifold lines. The structure of

the unit cell depends only on the dimer diagram under consideration.

For each choice of orientifold signs, the rules to read out the spectrum are similar to

the case of fixed points, see section 3.1. Our description here is thus more sketchy.

• Faces mapped to themselves by the orientifold action have their gauge factors pro-

jected down to SO or Sp for positive or negative orientifold line charge, respectively.

Faces paired up by the orientifold action are identified, and give rise to a single

unitary gauge factor.

• Edges mapped to themselves correspond to chiral multiplets in the two-index sym-

metric or antisymmetric tensor representations for positive or negative orientifold

line charge, respectively. Edges paired up by the orientifold action are identified, and

give rise to a single bi-fundamental field.

• Nodes mapped to themselves give rise to interaction terms in the superpotential.

4.2 Few examples and the geometric action

In this section we consider several examples of orientifold with fixed lines. We also describe

11An additional constraint is that the symmetry should map black to black nodes and white to white

nodes.
12In the orientifold literature it is well known that tori with line symmetries exist only for two possible

complex structures (rectangular and rhombus). This issue has been discussed in detail e.g. in [70, 71]. It

corresponds to the fact that in Type I the orientifold flips the B-field so only two choices are left: B = 0

and B = 1/2 (dual to rectangular and rhombus unit cell, respectively)
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Figure 13: Left: The dimer of C3 with line reflection. Right: The three fundamental mesons.

the geometric action on mesons, which can be obtained using rules similar to those of fixed

point orientifolds.

4.2.1 Line orientifolds of C
3

As a little warmup, let us come back to C
3. But this time, let us consider the line-reflection

symmetry as depicted in figure 13.

Clearly, The orientifold line passes through the face and depending on the sign of the

single O-plane, we obtain a SO/Sp gauge theory. One of the fields is mapped to itself

and projects down to the adjoint of the SO/Sp gauge group, which is denoted by Φ. The

other two fields are exchanged and lead to one two-index symmetric and one antisymmetric

representation, denoted by S,A respectively.

The superpotential can be obtained from the parent theory by simply replacing the

original fields by the components surviving the projection, which is given by

W = ΦAS − ΦSA. (4.1)

The superpotential in coming examples can be found similarly.

Concerning the geometric action, we anticipate that the line reflection exchanges the

mesons y and z and keeps the meson x fixed:

y ↔ z, x → x. (4.2)

This agrees with the fact that the model corresponds to the introduction of an O7-plane in

a system of D3-branes in flat space. The sign transformation of the mesons will be more

systematically discussed in section 4.2.4.

4.2.2 C
2/ZN × C, even N

Let us consider the example of C
2/ZN ×C, distinguishing the even and odd N cases. The

geometry has a T-dual realization as a HW setup with N parallel NS5-branes. Since these

models are orbifolds, we can also construct the orientifolds we are to discuss using CFT

techniques. Both descriptions can be found in [72, 73]. Thus, the models provide a good

starting point to derive the rules for the construction of the orientifolds in terms of dimer

diagrams with fixed lines.

Consider the even N case, for example C
2/Z4 × C shown in figure 14a. The unit cell
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Figure 14: Prototypical examples of orientifolds of the dimer of C2/Zn × C with orientifold fixed

lines. Figure a) illustrates the even n = 4 case, while the odd n = 3 case is illustrated in figure b).

They correspond to rectangular and rhombus unit cells, respectively.

Charges Gauge group 2-index tensors

(+−) Sp × SO × Sp × SO 1 + 2 + 3 + 4

(−+) SO × Sp × SO × Sp 1 + 2 + 3 + 4

(++) SO × SO × SO × SO 1 + 2 + 3 + 4

(−−) Sp × Sp × Sp × Sp 1 + 2 + 3 + 4

Table 9: The fixed line orientifolds of C
2/Z4 × C.

has a geometry such that the two orientifold lines are independent, so their signs can be

chosen independently. This leads to the four possible orientifold models whose gauge group

and two-index tensor structure is given in table 9. Here and in the following examples we

take as convention that we label the fixed lines from bottom to top, i.e. (+−) means that

the lower fixed line has positive charge while the upper line has negative charge. Note that

all models presented in table 9 possess in addition four bi-fundamentals:

( 1, 2) + ( 2, 3) + ( 3, 4) + ( 4, 1). (4.3)

Denoting the two-index tensors Ti, and the bi-fundamentals Xi,i+1, the superpotential for

the different models has the structure

W = TiXi,i+1Xi,i+1 − Ti+1Xi,i+1Xi,i+1. (4.4)

For instance, the model presented in the first row of table 9 has N = 2 supersymmetry

and reproduces the HW T-dual with an O4-plane. Notice the interesting feature that the

alternating structure of projections on the gauge factors and two-index tensors, which in

the HW is reproduced by an alternating charge of the O4 [74], here comes about simply

from the fact that different faces feel different orientifold planes (and similarly for edges).

Clearly, a similar model with completely opposite projections is obtained by considering

the lower orientifold line to be negative and the upper to be positive, as given in the second

row of table 9.

Let us use the parameterization xy = wN for C
2/ZN , and a coordinate z for the

additional C. Regarding the coordinates as mesons, we have an exchange of x and y. The
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Charges Gauge group 2-index tensors

(++) SO × SO × SO 1 + 2 + 3

(−−) Sp × Sp × Sp 1 + 2 + 3

Table 10: The fixed line orientifolds of C2/Z3 × C.

meson z crosses two orientifolds of opposite signs, suggesting it is odd, the same holds for

w.

Let us consider the case of both orientifold lines with positive sign. The corresponding

models can be found in the third and fourth row of table 9.

The theory has N = 1 supersymmetry and reproduces the HW T-dual with an O8-

plane, described in [73]. One can also infer that the geometric action exchanges the mesons

x and y while the meson z crosses two orientifolds of same sign, suggesting it is even, similar

for w.

4.2.3 C
2/ZN × C, odd N

Let us consider the odd N case, for instance the case C
2/Z3 × C shown in figure 14b.

The unit cell has a geometry such that there is only one orientifold line. Notice that this

automatically forbids the analogs of the N = 2 orientifolds described above for the even N

case. This is in complete agreement with the impossibility to introduce O4-planes in HW

configurations with an odd number of NS-branes.

The two possible models are given in table 10, where we show the gauge group and two-

index tensor structure. There we use the notation (++), (−−) for positive and negative

orientifold lines (to keep the analogy with the previous case).

In addition, both models possess three bi-fundamentals

( 1, 2) + ( 2, 3) + ( 3, 1). (4.5)

The structure of the superpotential is as in (4.4)

The models correspond to N = 1 theories, in agreement with the T-dual HW setup

with O8-planes described in [73]. Notice that in these HW models the O8-plane does not

have any alternating structure, so they really exist for odd N as well.

4.2.4 The geometric action

As for fixed point orientifolds, the simplest way to specify the geometric action of the

orientifold quotient is by providing rules for the action on the gauge invariant mesonic

operators. These can be easily obtained from simple examples (for which the geometric

action is known via other techniques) and extended to general validity. We simply state

them as follows

Rule 1: meson mapped to itself under the orientifold action picks a sign (−1)k where k

is the intersection number (counted with orientation) with negative orientifold lines.
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Rule 2: two mesons mapped to each other under the orientifold action are related without

any relative sign.

A simple consequence of these rules is that mesons corresponding to superpotential

terms associated to nodes on top of orientifold lines are even under the orientifold action.

This does not contradict the fact that the complete superpotential is odd (cf. footnote 8),

since in general different terms in the superpotential are swapped under the orientifold

action.13

For instance, consider C
3 with the orientifold action y ↔ z, x → x as discussed in

section 4.2.1. The operators t1 = tr(Φ1Φ2Φ3) and t2 = tr(Φ2Φ1Φ3) are exchanged, so the

meson (modulo F-terms) t ≡ t1 ≡ t2 is even. Still, the complete superpotential W = t1− t2
is odd.

It is straightforward to apply the above rules to obtain the geometric action for the

orientifolds constructed in the previous subsections. Let us use the parameterization, fa-

miliar from previous sections, xy = wN for C
2/ZN , and a coordinate z for the additional

C. Regarding the coordinates as mesons, we have an exchange of x and y. The meson z is

mapped to itself and crosses two orientifold lines. Finally, the same holds for w. From the

above rules we obtain the action

x ↔ y, z → εz, w → εw. (4.6)

With ε = −1 for the models with one positive and one negative orientifold line (and ε = +1

for the other examples). This precisely agrees with the geometric actions proposed in [72]

for the T-dual of the HW with O4-planes, and in [73] for the T-dual of the HW with O8-

plane. Notice that in all cases, the meson associated to the superpotential terms (which

can be regarded as xw) is even.

We hope that this examples suffice to illustrate the rules to construct orientifolds of

dimers with fixed lines. In the next section we apply these rules to construct further families

of examples.

4.3 Further examples

4.3.1 General Laba theories

It is straightforward to construct orientifolds with fixed lines for the entire Laba family. In

this section we illustrate it with a few examples.

Consider for instance the dimer shown in figure 15a, corresponding to the L131 geome-

try. There are two independent orientifold lines, whose signs can be chosen independently.

The gauge group and spectrum for the different choices are easily obtained using our rules.

This geometry is T-dual to a HW setup with 3 NS-branes and 1 NS′-brane. The

orientifold models we have described have not been discussed in the literature, but it is

possible to use this T-dual picture to double-check our results. Indeed it is easy to show (and

13The explanation in the mirror picture is as follows: These involutions switch the orientation of paths

bounding the faces in the dimer. Hence, the corresponding 1-cycles in the mirror Riemannian surface do

so. Thus, the superpotential terms are mapped to themselves, but an additional sign flip comes in due to

the orientation change (for illustration compare figures 23 and 26).
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Figure 15: Orientifold of the dimer of two Laba theories, corresponding to rectangular and rhombus

unit cells, respectively. Left: L131, Right: L121.

we skip its discussion) that models with opposite signs for the orientifold lines correspond

to HW setups with an O4-plane, while choices with equal signs correspond to HW setups

with an O8-plane. There is full agreement between the gauge group and matter spectra

obtained using both constructions.

Consider now the model in figure 15b, corresponding to the L1,2,1 geometry, namely

the SPP theory. There is only one independent orientifold line, so there is only one sign

to choose. Again, these are new models, which have not been previously discussed in the

literature. Since the SPP geometry is T-dual to a HW setup with 2 NS-branes and 1 NS′-

brane, one can use the T-dual picture to verify our results. Indeed the models obtained

agree with the introduction of an O8-plane in the T-dual HW setup. Note also that the

impossibility to introduce an O4-plane in the HW setup (due to the odd number of NS5-

branes), agrees nicely with the geometry of the unit cell, which does not allow for other

orientifold models.

The generalization to the general Laba theory is clear. In particular, one can exploit the

T-duality with a HW setup with a NS′-branes and b NS-branes along the circle direction

to check results. The construction of the dimer goes as follows. One goes along the circle

of the HW picture, and for each interval between two parallel branes one introduces a

column of hexagons in the dimer, and for each interval between two rotated branes one

introduces a column of rhombi. The complete picture is consistent, and admits the fixed

line orientifolds we have discussed. For a + b even, the corresponding dimer has a unit cell

leading to two independent orientifold lines. The four possible choices of sign reproduce

the different orientifolds, which are T-dual of models with O4-planes and O8-planes. For

a + b odd, there is only one orientifold line. The two possible choices of sign reproduce the

different orientifolds, which are T-dual to HW models with an O8-plane.

4.3.2 Orbifolds of the conifold

As a further set of examples, we would like to consider certain orbifolds of the conifold,

introduced in [54] (also known as generalized conifolds [75]) . They are also known as Laaa

theories, hence some of their orientifolds fall in the above description. However given some
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Figure 16: Orientifolds with fixed lines for the dimer diagram of the Z2 orbifold of the conifold.

additional symmetries of the dimer in this case, there are some new orientifold examples.

To be more specific, in figure 16 we show the possible orientifolds of the dimer diagram for

the particular case of the Z2 orbifold of the conifold, which is illustrative enough for our

purposes.

Let us consider the configuration in figure 16a. Its discussion fits in the general frame-

work of the Laba theories mentioned above, so we simply sketch their description. The unit

cell is such that there are two independent orientifold lines. The different choices lead, us-

ing our construction, to orientifold models in nice agreement with possible orientifold in the

T-dual HW setups with two NS-branes and two NS′-branes. Specifically, dimer diagrams

with orientifold lines of different sign give models which are T-dual to the introduction of

an O4-plane in the HW dual. Also, dimer diagrams with orientifolds lines of the same sign

yield models T-dual to HW setups with an O8-plane.

The gauge theory has a structure G1 × H2 × G3 × H4, with G,H being orthogonal or

symplectic depending on the sign of the orientifold line passing though the corresponding

face. The matter content is given by chiral bi-fundamentals Xi,i+1 in the ( i, i+1), and

the superpotential is

W = X2
12X

2
23 − X2

23X
2
34 + X2

34X
2
41 − X2

41X
2
12. (4.7)

Describing the geometry as xy = znwn, with the basic mesons defined as in figure 8,

the geometric actions correspond to

x ↔ y, z → εz, w → εw, (4.8)

with here and later on ε is given by the product of orientifold line signs (negative for

opposite signs, positive for equal sign).

Consider now the configuration in figure 16b. Again there are two independent ori-

entifold lines, whose signs can be chosen independently. The structure of the orientifold

theory on ZN orbifold of the conifold is as follows. The gauge group reads

G1 × U(n2) × . . . × U(nN ) × GN+1, (4.9)

with Gi given by SO/Sp for O+/− respectively.

For the N = 2 case in the figure, we have G1 ×U(n2)×G3, and the matter content is

given by

( 1, 2) + ( 1, 2) + ( 2, 3) + ( 2, 3), (4.10)
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with superpotential

W = X2
12X

2
21 − X12X23X32X21 + X2

23X
2
32. (4.11)

Using our techniques, the geometric action of the orientifold can be obtained as

z ↔ w, x → εx, y → εy. (4.12)

The above orientifold corresponds under T-duality to a HW model with O6-planes

away from the NS- and NS′-branes, and mapping them to each other (thus the orientifold

planes are at 45 degrees with the NS-branes in the 48 and 59 directions). This orientifold

has been briefly considered in [52].

Notice that for the particular case of the conifold the two orientifolds described above

(with horizontal or vertical fixed lines) are isomorphic (up to a relabeling of coordinates).

This is related to the enhanced global symmetries of the conifold, which lead to a very

symmetric dimer diagram.

Thus we have two possible HW T-dual interpretations for the orientifold of xy = zw

by the orientifold ωσ(−1)FL , with σ acting as

x ↔ y, z → εz, w → εw. (4.13)

This is in fact correct, as one can see as follows: One can regard the conifold as a C
∗ ,

parameterized by x, y, fibered over z,w and degenerating at z = 0 an w = 0. T-dualizing

along the circle in this C
∗ (namely the orbit of x → eiθx, y → e−iθy) gives one NS along

z and one NS′ along w. In this T-dual picture the orientifold action reproduces an O4-

plane for ε = −1 and an O8-plane for ε = +1. On the other hand, one can regard the

same equation as describing a C
∗ fiber parameterized by z,w fibered over x, y. T-dualizing

along the circle in this fibration, one gets one NS along x and one NS′ along y. In this

T-dual, the orientifold action introduces and O6-plane at 45 degrees with the NS- and NS′-

branes. Hence the two HW configurations are correct T-dual descriptions of the orientifold

model. It is amusing that the dimer representation is clever enough to realize this and

make manifest that the two orientifolds are actually the same!

5. The mirror perspective

The physical realization of the dimer diagram has been shown to be quite manifest upon

use of mirror symmetry [22]. The different gauge factors arise from D6-branes wrapped

on 3-cycles in the mirror geometry, with the bi-fundamental multiplets arising from their

intersection and the superpotential couplings arising from open string disk worldsheet in-

stantons. The dimer diagram is moreover recovered from the mirror geometry by a certain

projection on a two-torus.

We may therefore expect that there is a natural interpretation of the orientifold action

in the mirror geometry, and that some aspects of the previous discussion receive a new light

from this viewpoint. In this section we provide a description of orientifolding in the mirror

geometries, and its interplay with our previous dimer diagram description. Although we

do not achieve a systematic understanding of all aspects of orientifolding, we recover many

interesting results.
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5.1 Review of the mirror picture

The mirror configuration. Under local mirror symmetry, a system of D3-branes lo-

cated at the singular point of a non-compact toric Calabi-Yau 3-fold M are mapped to a

set of D6-branes wrapping supersymmetric 3-cycles in the mirror Calabi-Yau M̃ [76, 77].

The mirror manifold M̃ can be seen as a double fibration over the complex plane [78, 79]:

z = uv,

z = P (x1, x2),

where x1, x2 ∈ C
×, u, v, z ∈ C and P (x1, x2) is the Newton polynomial of the toric diagram

of the singularity. Note that one can read off P directly from the corresponding toric

diagram [82, 76]. More specifically, for a singularity whose toric diagram is given by a set

of points {(ni,mi)}, we have

P (x1, x2) =
∑

i

xni

1 xmi

2 . (5.1)

For instance, for the conifold we have P = 1 + x1 + x2 + x1x2. Note that the SL(2, Z)

freedom in choosing the basis of the toric lattice corresponds to a redefinition of coordinates

in the mirror geometry.

The first fiber defines a C
∗ fibration, degenerating at the origin of the base z = 0,

where the S
1 in C

∗, denoted S
1
c , shrinks to zero. The second fiber describes a punctured

Riemannian surface, which is denoted as Σ. Its genus g equals the number of internal points

of the toric diagram. The fiber over z = 0, denoted Σ0, is important for our purposes. It

corresponds to a smooth Riemann surface which can be thought of as a thickening of the

web diagram dual to the toric diagram [80 – 82]. At certain critical points z∗i on the base,

certain 1-cycles [ci] of Σ pinch off. In detail, the critical points z∗i can be obtained by

solving

∂x1P = 0, ∂x2P = 0, (5.2)

for x1, x2 and substituting back into the fiber defining Σ.

The geometry has a non-trivial compact 3-homology. We can define a set of 3-cycles

[Ci] by taking the segment [0, z∗i ] on the base and fibering the two-torus S
1
c × [ci] over it.

Since S
1
c shrinks to zero at z = 0 and [ci] shrinks to zero at z∗i , this defines a 3-cycle with

the topology of S
3. The mirror image of the D3-branes at the singularity correspond to

D6-branes wrapped on these 3-cycles. Namely, the fractional D3-brane giving rise to the

ith gauge factor is mapped to a D6-brane wrapped on the 3-cycle [Ci]. The bi-fundamental

chiral multiplets ( i, j) arise from open strings stretching between the ith and jth D6-

branes, at their intersections. That is, there are Iij = [Ci] · [Cj ] bi-fundamentals ( i, j)

in the gauge theory. Notice from the above description that the 3-spheres intersect only on

the fibers above z = 0. Hence, the geometry of the D6-brane cycles and their intersections

is encoded in Σ0.

The close relation between Σ0 and the gauge theory works in the reverse way, and

in fact it is easy to recover Σ0 and the geometry of the D6-branes in terms of the dimer

diagram. Given a dimer diagram, one can define zigzag paths (these, along with the related
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Figure 17: Dimer of the conifold with the corresponding four zigzag paths (for simplicity we

omitted the orientation of the zigzag paths).
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Figure 18: a) Shiver of the conifold b) The corresponding web diagram which provides a skeleton

of Σ0 with asymptotic legs corresponding to the punctures.

rhombi paths, were introduced in the mathematical literature on dimers in [31, 32], and

applied to the quiver gauge theory context in [21]), as paths composed of edges, and which

turn maximally to the right at e.g. black nodes and maximally to the left at white nodes.

They can be conveniently shown as oriented lines that cross once at each edge and turn

at each vertex, as shown in figure 17. We denote the colorful diagram corresponding to

the set of such zigzag-lines: The Harlequin diagram.14 Notice that at each edge two zigzag

paths must have opposite orientations. For dimer models describing toric gauge theories,

these zigzag paths never self-intersect and form closed loops wrapping (p, q) cycles on the

T
2. This is shown for the conifold in figure 17.

As shown in [22], the dimer diagram can be associated to a tiling of the Riemann

surface Σ0 in the mirror geometry, which we denote the ‘shiver diagram’. Specifically, each

zigzag path of the dimer encloses a face of the shiver, and the (p, q) charge of the associated

leg in the web diagram is the (p, q) homology charge of the zigzag path in the dimer T
2. The

tiling of Σ0 for the conifold is shown in figure 18a, while the corresponding web diagram

is shown in figure 18b. The dimer diagram moreover encodes the 1-cycles in the mirror

14Any graph has an associated Harlequin diagram consisting of its zigzag paths. In short, we will introduce

a tiling of the Σ0 that we denote shiver diagram. Both the dimer and shiver diagrams have associated

Harlequins. We are confident that the reader can distinguish between the two constructions based on the

context.
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Figure 19: Harlequin diagram of the conifold shiver. The two zigzag paths of the conifold shiver

corresponding to the 1-cycles in Σ0 the D6-branes are wrapped which give rise to the two gauge

groups.

Riemannian surface, associated to the different gauge factors in the gauge theory. Consider

a gauge factor associated to a face in the dimer diagram. One can consider the ordered

sequence of zigzag path pieces that appear on the interior side of the edges enclosing this

face. By following these pieces in the tiling of Σ0 one obtains a non-trivial 1-cycle in

Σ0 which corresponds precisely to that used to define the 3-cycle wrapped by the mirror

D6-branes carrying that gauge factor. Using this map, it is possible to verify all dimer

diagram rules (edges are bi-fundamentals, nodes are superpotential terms) mentioned at

the beginning. An amusing feature is that these non-trivial 1-cycles in Σ0 are given by

zigzag paths of the tiling of Σ0. The non-trivial 1-cycles in the mirror Riemann surface for

the case of the conifold are shown in figure 19.

A direct construction of the shiver diagram from the knowledge of the toric gauge

theory and its superpotential is explained in detail in section A.

The amoeba and alga maps. There exists certain projections of the Σ fibration which

turn out to be useful in relating the mirror configuration to the dimer diagram [22]. Con-

sider the amoeba projection, given by the map Σ → R
2:

(x1, x2) ∈ Σ → (s = log(|x1|), t = log(|x2|)) ∈ R
2, (5.3)

It has been widely studied in mathematics, and it has the useful property that the punctures

of Σ map to ”tentacles” perpendicular to the convex polyhedron associated to the toric

variety of M [83]. Namely, it provides a smooth version of the web diagram for the toric

singularity. For example, the amoeba of the conifold and a Z2 orbifold thereof are illustrated

in figure 20.

Let us consider a different projection. Namely, the projection of Σ onto the phases of

x1 = |x1|e
iΦ and x2 = |x2|e

iΘ. This projection was dubbed alga map in [22], and provides

a natural map Σ → T
2:

(x1, x2) ∈ Σ → (Φ,Θ) ∈ T
2, (5.4)

Moreover, at least for certain cases, it is possible to identify this T
2 with the dimer T

2 and

recover the dimer diagram from the image of the alga [22]. As is discussed in section 5.3,
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Figure 20: Left: Amoebae of the conifold. Right: Amoebae of conifold/Z2.

this map turns out to be useful for translating the orientifold action from the dimer to an

involution on Σ.

Tadpole cancellation. An important consistency condition of systems of D-branes at

singularities is cancellation of RR tadpoles of compact support. This condition is manifest

in the mirror geometry, as cancellation of compact homology charge of the wrapped 3-

cycles, see [76, 69]. Given that the set of 3-cycles [Ci] in the mirror geometry provides a

basis of the compact 3-homology, an equivalent definition is as follows: the total homology

class of the system must have zero intersection number with any of the basic 3-cycles [Ci].

As usual, this implies cancellation of gauge anomalies for the four-dimensional field theory.

The simplest solution to these constraint is to consider an equal number of D-branes

corresponding to each gauge factor (the conformal case of D3-branes at a singularity). In

the mirror geometry, it is possible to see that in the set of 3-cycles [Ci] can recombine

into a single 3-cycle with the topology of T
3. This is the mirror of the statement that in

this situation the different fractional branes can form a bound state corresponding to a

dynamical D3-brane able to move off the singular point.

In the presence of orientifold planes, the orientifold plane has a contribution to RR

charge, proportional to the compact 3-homology class of the 3-cycle it wraps. This implies

that the set of D6-branes required to cancel RR tadpoles is different from those in unori-

entifolded system (and in particular that no recombination into a T
3 cycle is possible). An

example is discussed in section 5.4.

Supersymmetry and calibrations. In order that the D6-branes and O6-planes in the

mirror geometry preserve a common supersymmetry, they need to wrap special Lagrangian

submanifolds. This is made more explicit in section 5.5, where a (local) calibration condi-

tion is given for the embedding of the D6-branes and O6-planes to fulfill.

A subtlety for genus 0. We would like to conclude this section with a clarification

regarding the genus 0 case. As already mentioned in [22], for Σ of genus 0 it may happen

that the mirror fibration has fewer critical points than needed to explain the number of

gauge factors. For instance for the mirror of C
3 there are no critical points, and for the

conifold there is only a single critical point.
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Figure 21: a) The C3 shiver Harlequin on the Riemann sphere with three punctures. The darkly

shaded faces mark the world-sheet disk instantons. b) Heuristic picture of the C3 shiver Harlequin

diagram. There is one self-intersecting cycle, with three intersection points giving the three adjoint

fields of N = 4 SYM.

Looking at these examples in detail one however finds no paradox. For instance, the

mirror of the D3-branes in C
3 is given by a D6-brane wrapped on a smooth T

3 in the mirror

geometry (given by fibering S1
c times a 1-cycle in Σ over a 1-cycle in the base encircling

the origin).

Similarly, a single critical point for the conifold is not necessarily a problem. The Σ

fibration in this case is given by15

1 + x1 + x2 − x1x2 − z = 0, (5.5)

Clearly, there is only a single critical point at z = 2, above which the fiber is

(1 − x1)(1 − x2) = 0. (5.6)

This describes two complex planes given by x1 = 1, x2 arbitrary and x2 = 1, x1

arbitrary. Under the amoeba projection (5.3) they reproduce the web diagram of the

conifold (cf. figure 20), with the interior shrunk to a point. This implies that the two 1-

cycles associated to the two gauge factors shrink at this point, and can be used to construct

two 3-spheres. This fits with the picture in [76].

We conclude this review section by noting that one can nicely visualize many of the

properties of the mirror geometry by drawing the mirror surface Σ0 with the 1-cycles

wrapped by the D6-branes as illustrated in figure 21a.

5.2 Orientifolds in the mirror system

In this section we would like to consider the introduction of orientifold quotients in the

mirror configurations. As described above the mirror configuration is given by a set of

D6-branes wrapped on special lagrangian 3-cycles in the mirror Calabi-Yau geometry. The

natural orientifolding operation in this system is the introduction of O6-planes on the 3-

cycles fixed under an antiholomorphic action, that is modding out by ωσ̃(−1)FL , where

15To avoid confusion, note that we switched on a non-trivial B-field. As is clear, without B-field the

mirror interpretation breaks down at the conifold point.
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Figure 22: Orientifold action on the mirror Riemann surface Σ0 of the SPP singularity. The red

lines are the non-compact 1-cycles wrapped by the O6-planes, while the other colored lines are the

1-cycles wrapped by the D6-branes.

ω is worldsheet parity and σ̃ is an antiholomorphic action on the mirror geometry (hence

acting as Ω → Ω on the holomorphic 3-form).16 Notice that this implies that the orientifold

preserves a common supersymmetry with the D6-brane system. Different choices of the

orientifold geometry corresponds to different orientifolds of the D-brane systems (as is

studied in Type IIB using the dimer diagram). Since on the mirror side one has to deal

with the (in general complicated) geometry of Σ, a systematic classification of possible

orientifolds is beyond the scope of this work. Our aim is rather to present how different

ingredients of the orientifold arise in the mirror picture.

It is illustrative to describe at this stage some general features of the orientifold mirror

geometries. The antiholomorphic action on the geometry (5.1) can be defined by specifying

antiholomorphic actions on the base and fibers. Namely, the O6-planes in the geometry

span a real dimension on the base, and on each of the fibers. Clearly, given that essentially

all the information of the gauge theory is encoded on the Riemann surface Σ0 over z = 0,

much of the information of the orientifold is encoded in the antiholomorphic action on Σ0.

In figure 22 we show a prototypical example of such involution, for the case of the mirror

of the SPP singularity.

The anti-holomorphic action on Σ0 can more practically be visualized on the shiver

diagram of the system. This allows a direct interpretation of the action of the orientifold

on the gauge theory data. The action in figure 22 is shown on the shiver of the SPP in

16Systems of D6-branes in the presence of O6-planes have been extensively studied in compact setups in

the intersecting brane model literature, see e.g. [84 – 87] for reviews.
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Figure 23: Left: Antiholomorphic involution acting on the shiver of SPP. Right: Action on the

corresponding Harlequin diagram.

figure 23.

Note that the fixed set contains a set of non-compact branches escaping to infinity

along punctures. In principle these orientifold branches correspond to disconnected O6-

planes in the geometry, and hence can have different RR charges and thus imply different

orientifold projections. We expect that the freedom in choosing these charges (along with

other discrete choices on how the involutions act on the rest of the mirror geometry)

reproduce the different orientifold of a given system. However we have not achieved such a

complete understanding, and here simply restrict to well-understood aspects of the mirror

orientifold.

In either of these pictures it is easy to read out the effect of the orientifold on the

gauge theory. For instance, the gold D6-branes are mapped to themselves, while the green

and blue are mapped to each other.17 This implies that the gauge group of the orientifold

field theory is

G1 × U(N2), (5.7)

with G1 corresponding to SO/Sp depending on the sign of the orientifold branch crossing

the gold D6-brane. Concerning the matter content, the orientifold action on the intersec-

tions implies that it is given by

( , ) + (1, R) + (1, S) + (T, 1), (5.8)

where R,S, T are two-index tensor representations determined by the RR charge of the O6-

plane branches passing through the corresponding intersection (and possibly the relative

geometry of the D6-branes and O6-plane in the complete geometry).

These pictures of the mirror construction provide a good understanding of the ori-

entifold action on the gauge theory ingredients. However, we have not found a proper

general explanation of detailed projections of the gauge groups to orthogonal and sym-

plectic factors, and of the chiral multiplets mapped to themselves to two-index symmetric

17Of course this statement is valid for an appropriate action of the orientifold on the z-base, which is

easy to construct and whose details we skip for the moment.
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and antisymmetric representations. Leaving this more detailed understanding for future

work, we proceed with the description of several classes of involutions and their effect on

the gauge theory.

5.3 Classes of orientifold involutions

It is possible to use the alga projection to find the involutions of the mirror geometries that

correspond to the orientifold of the dimer diagrams studied in section 2.3. The main idea

to achieve this is to start from the action on the coordinates (Φ,Θ) of the dimer T
2, and

infer an action on the variables x1 and x2 of the curve Σ0. By demanding invariance of Σ

under the action, one can infer an extension to the whole double fibration given in (5.1),

i.e. infer an action on u, v and z.18

5.3.1 Involutions mirror to orientifold dimers with fixed points

Let us start with the orientifolds that act as a point reflection on the dimer diagram.

Using the alga map (5.4) it follows that point reflection in the dimer diagram corresponds

to complex conjugation of x1 and x2.

This can be extended to an antiholomorphic involution of the Σ fibration by specifying

the additional action z → z. Note that this maps the fiber over z to the fiber over z. Note

also that this in general exchanges the degeneration points z∗i of the fibration.

In most examples (see later for examples), supersymmetry of the O6-plane with respect

to the D6-branes fixes that the latter should span the S
1
c circle in the C

∗ fibration. This

implies that the anti-holomorphic action on the C
∗ fibration is

(u, v) → (v, u). (5.9)

Note that the phase in this action is fixed by requiring that the S1
c is mapped point-wise

to itself (so that the orientifold planes really exist).

Given the above action on the geometry, one can obtain the action on the 3-spheres

the D6-branes are wrapped on, namely Ci → Ci, where i denotes the complex conjugate

of the critical point. This allows to obtain the effect of the orientifold on the gauge theory,

as illustrated in the following concrete example:

Consider the orientifolds of C
3/Z3, studied in section 3.5.1 from the viewpoint of the

dimer diagram. The mirror of the geometry and the system of D-branes has been discussed

in detail in [78, 88, 76]. The mirror geometry is given by

z = uv,

z = P (x1, x2) = x1 + x2 + x 2
1 x 2

2 , (5.10)

The degenerations of the Σ fibration can be obtained by solving (5.2). They are located

at

z∗k = r e2πi k/3, (5.11)

18It is implicitly understood that we are at special points in moduli space such that the involution exists.
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Figure 24: The mirror Σ fibration for the dP0 theory. On the left we show the elliptic fiber Σ0,

with the shiver and with punctures shown as crosses. On the right the red dots correspond to the

critical points of the elliptic fibration, while the blue dot correspond to the critical point of the

circular fibration over the base z. The blue, green and gold lines correspond to the cycles wrapped

by the D6-branes, while the red line corresponds to the orientifold plane (which splits into three

branches).

with r a constant not relevant to the discussion below.

The structure of the Σ fibration is drawn in figure 24. It allows to immediately read

off the structure of the orientifold field theory. We see that S3
1 is mapped to itself while S3

2

and S3
3 are exchanged under the involution, yielding the gauge group

G1 × U(n2) (5.12)

with G1 an orthogonal or symplectic factor. Concerning the matter content, one can

directly read out the intersections mapped to themselves or exchanged by the orientifold

action and obtain the spectrum

3 [ ( 1, 2) + (1, R2) ] (5.13)

where R2 is a two-index tensor. This agrees with the structure obtained in section 3.5.1.

For later discussion it is convenient to focus on a concrete choice. Consider the three

orientifold branches to have negative RR charge. This corresponds to the representation

R2 corresponding to the two-index antisymmetric representation, and should correspond

to G1 being an orthogonal SO(n1) factor. Other choices should reproduce the different

orientifolds classified in section 3.5.1.

Clearly many other examples can be worked out similarly. We leave them as exercises

for the interested reader.

5.3.2 Involutions mirror to orientifold dimers with fixed lines

Here we would like to consider other kinds of involutions, that correspond to orientifolds

of the dimer with fixed lines, which exist for particular geometries. For concreteness, we

consider two examples. Namely, the non-trivial orientifolds of C
3 and of the conifold as

discussed in section 4.2.1 and section 4.3.2. Generalization to other examples should be

clear.

Let us start with the mirror geometry of C
3, where the Σ fibration is given by

z = 1 + x1 + x2. (5.14)

– 40 –



J
H
E
P
0
9
(
2
0
0
7
)
0
7
5

a) b)

Figure 25: a) Σ0 of C3 with the fixed-line involution (red line). b) Action on the Harlequin

diagram.

Via the alga map, we can translate the action on the dimer T
2 to an involution on Σ:

x1 → x2, x2 → x1. (5.15)

Hence, the base and the circular fibration transform as in section 5.3.1.

It is easy to deduce that the corresponding fixed-point set corresponds to a 1-cycle

that runs from a puncture back to the same puncture, as illustrated in figure 25a. We

infer that we obtain a SO/Sp gauge group with a single adjoint, one symmetric and one

anti-symmetric tensor, as expected from section 4.2.1.

As another example, let us consider the mirror of the conifold. The action with fixed

lines in the dimer diagram of the conifold corresponds to a reflection of one circular coor-

dinate leaving the other invariant. Recalling that the alga map interprets these circles as

phases of coordinates in the mirror geometry, we infer the following action on the variables

x1 and x2:

σ̃(x1) = x1, σ̃(x2) =
1

x2
. (5.16)

This can indeed be extended to a symmetry of the Σ fibration by requiring that the

coordinate z on the base transforms as

z →
z

x2
(5.17)

Notice that this is indeed an involution, given the specific transformation of x2 in (5.16).

Similarly, it can be extended to an involution of the C
∗ fibration (with the circle on its

fixed point set) by introducing the action

u → v ; v →
u

x2
. (5.18)

The fixed point set is given by two components x1 ∈ R, x2 = +1, z ∈ R, u = v and x1 ∈ R,

x2 = −1, iz ∈ R, u = −v. This suggests that the fixed set in the Riemann surface Σ0

passes through two punctures. Indeed, the effect of this involution on Σ0 can be captured
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Figure 26: Left: The action of the involution on the shiver of the conifold. Right: Action on the

corresponding Harlequin diagram.

by using the amoeba map (5.3). In detail, the action on the amoeba image, namely the

web diagram, is given by

σ̃(s, t) = (s,−t). (5.19)

It corresponds to a Z2 reflection keeping two punctures (t = 0, s → ±∞) fixed, while

mapping the other two (s = 0, t → ±∞) to each other.

The O6-plane has two branches, which can in principle have either sign.

In figure 26 we see the action on the conifold shiver diagram. One can immediately

obtain the effect of the orientifold on the gauge theory. Each of the 1-cycles associated

to the D6-branes are mapped to themselves under the orientifold action, hence the gauge

group is

G1 × G2 (5.20)

with Gi and orthogonal or symplectic gauge factor, determined by the sign of the orientifold

branch crossing the corresponding 1-cycle. Concerning the matter content, no intersection

is invariant under the orientifold action, rather any intersection is mapped to an image.

Hence, the matter content is

2 ( 1, 2). (5.21)

The resulting theories are in precise agreement with the construction in terms of dimer

diagrams in section 4.3.2.

5.4 Tadpole cancellation

An advantage of the mirror description of these systems is that it makes it manifest the

RR charges carried by the D6-branes and O6-planes in terms of the 3-homology classes of

the 3-cycles they wrap. In this language, cancellation of RR tadpoles corresponds to the

condition that the compactly supported homology classes of the different objects add up

to zero. Since this point has already been discussed in the literature (see e.g. [76, 69]), we

simply sketch the general idea and provide a simple example.
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Consider first the situation in the absence of orientifold planes. We have stacks of Na

D6-branes wrapped on 3-cycles [Πa]. The total homology charge of the system should cancel

in compact homology. This is equivalent to demanding the vanishing of its intersection with

the elements [Cb] of a basis of compact homology:

∑

a

Na[Πa] · [Cb] = 0 ∀b. (5.22)

For branes at singularities, the 3-cycles wrapped by the branes are themselves elements

of the basis. The conditions
∑

i Na[Ca] · [Cb] = 0 are then equivalent to the conditions of

cancellation of non-abelian gauge anomalies on the D6-brane wrapped on [Cb]. We thus

recover the equivalence between cancellation of compact RR tadpoles and cancellation of

gauge anomalies.

As a simple illustrative example, consider the dP0 theory, whose mirror geometry is

described in section 5.3.1. The gauge theory on the D6-brane system is
∏

i U(Ni) with

matter 3
∑

i( i, i+1). The condition of cancellation of anomalies requires N1 = N2 =

N3. This is in agreement with the fact that the total homology class N( [C1] + [C2] + [C3] )

has zero intersection number with any of the basis 3-cycles [Ca] (and hence is zero in

compact homology).

A similar result holds in the presence of orientifold planes, as has been described in the

intersecting brane literature. Focusing to the case of D6-branes wrapping basis cycles, we

consider a set of Na D6-branes on 3-cycles [Ca] and their orientifold images on [Ca′ ]. The

O6±-planes wrap 3-cycles with total compact homology class ±4[ΠO6± ], where the factor

of 4 comes from the O6-plane charge. Cancellation of compact homology charge requires

[Πtot] =
∑

a

Na [Ca] +
∑

a′

Na′ [Ca′ ] + 4 ([ΠO6+ ] − [ΠO6− ]) = 0. (5.23)

Equivalently, one may require [Πtot] · [Ca] = 0 for all basis 3-cycles:

∑

b

Nb[Cb] · [Ca] +
∑

b′

Nb′ [Cb′ ] · [Ca] + 4 ([ΠO6+ ] − [ΠO6− ]) · [Ca] = 0. (5.24)

These conditions are equivalent to the cancellation of anomalies on the D6-brane wrapped

on [Ca]. This is easily shown by noticing that the field content on such brane is as follows:

• [Ca] · [Cb] chiral multiplets in the ( a, b),

• [Ca] · [Cb′ ] in the ( a, b),

• [Ca] · [CO6± ] fields in the a, respectively a representation from aa′ intersections

on top of orientifold planes,

• 1
2 [Ca] · ([Ca′ ]− [CO6+ ]− [CO6− ]) fields in the a + a from aa′ intersections away

from orientifold planes.

Hence we conclude that cancellation of RR tadpoles is equivalent to cancellation of

gauge anomalies on D6-branes on all possible basis 3-cycles. It is important that in con-

figuration where some multiplicity Na is zero, one still needs to impose [Πtot] · [Ca] = 0.
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In this sense, one needs to require cancellation of anomalies, even for gauge factors absent

in the specific model at hand. In fact this condition is not satisfied by some models in the

literature.

Cancellation of RR tadpoles in coming examples are carried out by checking cancella-

tion of anomalies on the D6-branes. To illustrate with an example, let us again consider the

orientifold of the dP0 theory in section 5.3.1. The geometry of the D6-branes and O6-planes

is shown in figure 24. As discussed, in the case where all orientifold plane branches carry

negative charge it leads to a gauge theory with gauge group SO(n1) × U(n2) and chiral

multiplets 3( 1, 2) + 3(1, 2). Here n1 correspond to the number of D6-branes in

the 3-cycle [C1], and n2 is the number of D6-branes on [C2] and [C3] (which must be equal

due to the orientifold symmetry). Cancellation of tadpoles corresponds to cancellation of

SU(n2) anomalies (since SO(n1) is automatically anomaly free), and leads to the condition

n1 + 4 = n2.

Other examples can be discussed similarly. Notice that in general it may not be possible

to satisfy the RR tadpoles with compact D6-branes. In such situations, it may be possible

to satisfy them by introducing non-compact D6-branes. These are mirror to D7-branes in

the Type IIB picture.

5.5 Calibration

In the introduction of O6-planes in the system, we have implicitly used a constraint that

we would like to make explicit at this point. In order that the various D6-branes and

O6-planes preserve a common supersymmetry, they need to wrap special lagrangian 3-

cycles, i.e. the phase of Ω must be constant on the volume of the wrapped 3-cycle. This

calibration condition for the geometries at hand can be made explicit as follows (cf. [69]).

Let us introduce a local coordinate w on Σ0 near an intersection locus of D6-branes and

an O6-plane. Then the holomorphic 3-form is locally given by

Ω = dz ∧ dw ∧
du

u
, (5.25)

Parameterizing the 3-spheres [Ci] as

z = |z∗i |e
iθi , u =

√
|z∗i |e

iν , v =
√

|z∗i |e
−iνeiθi , w = |w|eiφ, (5.26)

we obtain that Ω restricted to the D6-brane volume is given by

Ω|D6 = iei(θ+φ)d|z| ∧ d|w| ∧ dω (5.27)

We thus conclude that the 3-cycles are special lagrangian for

θ = −φ, (5.28)

In other words, the angle in the base must be aligned with the angle in Σ0.

The non-compact O6-planes (as well as possible) non-compact D6-branes can be pa-

rameterized similarly. Namely, considering they wrap the S
1
c circle in the C

∗ fibration,

their angles in the elliptic fibration should obey (5.28). This kind of constraint has been
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implicitly used in section 5.3.2 to require that the O6-plane spans the S
1
c in the C

∗ fiber.

Namely, the angle between the O6-plane and the D6-branes in Σ0 can be argued to be π/2,

while the angle on the z-plane is −π/2; hence it is calibrated only if it wraps S
1
c .

6. Applications

In this section we discuss several possible physical applications of models of the kind studied

in this paper. They correspond to diverse systems where the presence of orientifold planes

is crucial in the physics.

6.1 Dynamical supersymmetry breaking

One of the most interesting applications of systems of D-branes at singularities is to study

the dynamics of gauge theories on fractional branes. This can lead to the strong dynamics

phenomena of confinement [8, 9] or to supersymmetry breaking [10 – 12] with runaway to

infinity [11, 89, 90]. Upon the addition of flavor D7-branes, this can also lead to metastable

vacua [65, 91].19

One also expects rich strong dynamical phenomena on systems of D-branes at ori-

entifold singularities. A full classification and study is beyond the scope of the present

paper, but we would like to mention the existence of configurations of D-branes leading to

dynamical supersymmetry breaking in the vacuum.

The model we like to present is based on the C
3/Z

′
6 geometry, where the Z

′
6 is generated

by

zi → e2iπvizi, (6.1)

with v = (1, 2,−3)/6. The orientifolded dimer diagram is shown in figure 27, where we

also show some of the basic mesons, which are related to the C
3 coordinates by

x = z 6
1 , y = z 3

2 , z = z 2
3 . (6.2)

As extensively discussed in section 3, one can obtain different models by choosing

different signs for the orientifold points. Each choice of sign setup corresponds to a different

orientifold action. Consider the choice of orientifold signs (a, b, c, d) = (+ + −−). Using

our rules, the gauge theory for general ranks can be obtained as

SO(n0) × U(n1) × U(n2) × Sp(n3)

( 0, 1) + ( 1, 2) + ( 2, 3)+

+( 0, 2) + ( 1, 3) + 2 + 1+

+[ ( 0, 3) + ( 1, 2) + ( 1, 2) ] . (6.3)

As described in section 5.4, the requirement of cancellation of non-abelian gauge anomalies

is equivalent to the requirement of cancellation of compact RR tadpoles. The condition

reads

−n0 + n2 + n3 − n1 − 4 = 0. (6.4)

19For other realizations of metastable vacua using D-branes at singularities see [92, 93].
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x
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y

1

2

2
3

4

4 5

5

0

0

0

a

d

c

b

Figure 27: Dimer diagram for an orientifold of the C3/Z′

6 theory.

This condition can be solved by e.g. n1 = n3 = 0, n0 = N , n2 = N + 4. The gauge

theory becomes SO(N)×U(N + 4) with matter ( , )+ (1, ). The U(1) gauge factor

is anomalous and becomes massive by coupling to a suitable RR field, hence disappears

from the massless spectrum. For the particular case of N = 1, one indeed obtains a fully

consistent configuration, leading to a SU(5) theory with chiral multiplets in the 10 + 5

and no superpotential. This theory has been argued to show dynamical supersymmetry

breaking [94].

The above model corresponds to the geometric action

x → −x, y → −y, z → −z. (6.5)

Equivalently, the orientifold group is (1 + θ + · · · + θ5)(1 + Ωα(−1)FL), where α acts as

(z1, z2, z3) → (e2iπ/12, e4iπ/12, e−6iπ/12). (6.6)

In fact, it is possible (but lengthy) to directly construct this orientifold model using CFT

techniques.

It is easy to use our tools to construct other examples realizing the same gauge the-

ory, thus leading to dynamical supersymmetry breaking vacua. As a further example to

illustrate our tools, consider Model I of pseudo del Pezzo 4 (PdP4) [95, 28], whose dimer

is shown in figure 28.20

The structure of the gauge theory is

G5 × U(n1) × U(n2) × U(n4)

( 5, 1) + ( 5, 4) + ( 5, 2) + T1+

+( 1, 4) + ( 1, 2) + ( 2, 4) + R2 + S4 . (6.7)

The signs of the orientifold points determine the orientifold projections on the gauge fac-

tor G5 and the two-index tensor representations T1, R2 and S4, respectively. The dimer

diagram contains 8 superpotential couplings, hence the sign parity is even.

20PdP4 is a non-generic, toric blow-up of dP3. It was first introduced in [95], where the corresponding

gauge theory was also investigated.
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Figure 28: Dimer diagram for an orientifold of the PdP4 theory.

For the choice of signs (+ − +−), we have G5 = SO(n5), T1 = 1, R2 = 2 and

S4 = 4. The tadpole/anomaly cancellation conditions for the theory are simply

n5 − n1 − n2 + n4 + 4 = 0, (6.8)

which we can satisfy by taking n2 = n4 = 0, n5 = N , n1 = N + 4. The resulting theory

is SO(N) × U(N + 4) with matter ( , ) + (1, ). Thus for N = 1 it reproduces the

dynamical supersymmetry breaking theory of interest.

Note that there have been several proposals of orientifold models in the literature which

claim to realize the above SU(5) gauge theory [96, 97]. Although insightful in suggesting

orientifold models to reproduce dynamical supersymmetry breaking, the proposals show

technical problems in the specific models presented, as one can show using our new tools.

The model in [96] is based on an orientifold of C
3/(Z3 ×Z3) corresponding to a dimer

with fixed lines. The orientifold projection on gauge factors and two-index tensors in the

reference is not compatible with the existence of a single orientifold fixed line for this

model.21

The orientifold model proposed in [97] is based on C
3/Z

′
6 with an orientifold action

(z1, z2, z3) → (z1, z2,−z3). This corresponds to the action

x → x, y → y, z → z, (6.9)

and can be described with the dimer diagram with fixed points given above. The corre-

sponding sign setup leading to this geometric action is (+ + ++) or (− − −−). Thus,

the resulting spectra do not agree with the theory of interest since there is no model with

orthogonal gauge factor and matter in two-index antisymmetric tensor representations.

Since these models are based on orbifolds, we have also double-checked our results by

direct computations using CFT techniques.

It is remarkable that our new tools facilitate the construction of orientifolds in a simple

and systematic way. We expect them to be extremely useful in the study of infrared

dynamics of systems of D-branes at orientifold singularities.

21Note that other models in this reference, for instance the 3-2 model realized on dP5 are non-toric and

we cannot use our tools to check their consistency.
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It is almost suggestive that one can find whole families of orientifold models yielding

dynamical supersymmetry breaking. We leave a detailed investigation and classification of

these models for future work.

6.2 D-brane instantons

In Type II compactification, many important non-perturbative effects arise from Euclidean

D-brane instantons. In configurations with 4d spacetime filling D-branes leading to a gauge

sector, such D-brane instanton can induce superpotentials corresponding to non-trivial

field theory operators. This can correspond to a field theory instanton effect (when the

structure of the Euclidean D-brane instanton in the Calabi-Yau geometry is the same as

that of one of the 4d spacetime filling branes), see [98 – 101] for recent discussions, or to

a D-brane instanton without such field theory interpretation (stringy D-brane instantons),

see [99, 102 – 106] for recent discussions. Focusing in the latter case, the D-brane instanton

typically has fermion zero modes αa, βb transforming in the a, b under the 4d

gauge factors a, b. If there is a coupling αaOabβb where Oab is a 4d chiral operator in

the ( a, b), integration over the fermion zero modes leads to insertions of O in the

superpotential [107].

As discussed in general in [106] and in particular cases in [108, 101, 105], stringy

D-brane instantons in perturbative Type II compactifications without fluxes generically

have four uncharged fermion zero modes, and cannot generate superpotential couplings.

In the presence of orientifold planes, the orientifold projection on instantons with O(1)

world-volume gauge group removes two fermion zero modes, thus allowing the possibility

of non-perturbative superpotentials.

This observations make orientifolds of D-branes at singularities a natural setup to

study this non-perturbative effects. In fact, some concrete examples have already appeared

in [93, 105]. It is clear that the techniques developed in this paper provide many additional

examples of D-brane instantons in this kind of systems. Namely, one can consider D-

brane instantons with the internal structure corresponding to one of the faces of the dimer

diagram (and on top of an O−-plane to have O(1) symmetry).22 This instanton is stringy if

there are no 4d spacefilling branes for the corresponding face. Edges between the instanton

face and faces of 4d spacefilling branes correspond to instanton fermion zero modes, and

nodes correspond to their interactions. Thus one easily obtains the structure of the induced

superpotentials.

In figure 29 we show several examples of stringy D-brane instantons (shown as shaded

faces) generating non-perturbative superpotentials. Figure 29a shows a D-brane instanton

in the orientifold of C
3/(Z2 × Z2) studied in [105]. The magenta faces correspond to 4d

spacefilling D-branes, while the green face corresponds to a D-brane instanton. Notice

the fermion zero modes of the latter α31, β23 (and their orientifold images) arising from

edges between magenta and green faces, and their cubic coupling αΦ12β to the 4d chiral

22Note the sign flip in the orientifold action on the gauge group of D-brane instantons as compared with

4d spacefilling D-branes.
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Figure 29: D-brane instantons in systems of D-branes at orientifolded singular geometries. Figure

a) shows an instanton (filling the green face) in an orientifold of C3/(Z2 ×Z2). Figure b) shows an

instanton in an orientifold of a generalized conifold.

multiplet Φ12. Figure 29b shows a D-brane instanton in the orientifold of the Laba geometry

considered in [93]. Notice the fermion zero modes α54, β45, and the coupling αX43X34β.

It is straightforward to use our techniques to obtain many other examples of stringy

D-brane instantons generating superpotentials in systems of D-branes at singularities with

orientifold actions. We leave a more detailed discussion for future work.

7. Conclusions

We have introduced dimer model techniques that allow an easy determination of the gauge

theory on D-branes over orientifolds of general toric singularities. As in the unorientifolded

case, dimers provide the most comprehensive available classification of such theories.

The rules have been presented as a heuristic extrapolation of some simple families of

examples. However, it is important to emphasize that they are automatically consistent

with partial resolution (and its inverse process of un-Higgssing) and therefore extend by

induction to arbitrary toric singularities. This constitutes a proof of the rules we have

presented.

Under the new light, the pre-existing examples based on worldsheet computations for

orbifolds and theories with T-dual Hanany-Witten setups become trivial.

We explained how to extract the geometric action of the orientifold using mesonic

operators. We also explored in detail the orientifolds from the point of view of the mirror

geometry.

To give a flavor of some possible applications of our ideas, we chose dynamical super-

symmetry breaking and D-brane instantons. We are confident that our tools will permit a

systematic investigation of large families of models and fuel considerable progress in model

building.

We also expect other exciting directions to profit from our work. To name one, it

is natural to expect that they will help extending recent progress in the combinatorics
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of quiver gauge theories (counting of chiral BPS gauge invariant operators) to orientifold

theories.
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A. From quivers to dimers and shivers

The authors of [22] constructed the dimer and shiver of a given toric quiver gauge theory

via a 2- or respectively 3-step procedure. Firstly, they glued the superpotential terms

appropriately together to obtain the periodic quiver, then they graph dualized the periodic

quiver to obtain the dimer and finally performed an untwisting procedure to arrive at the

shiver. In the following, we give a more practical algorithm to obtain the dimer as well

as the shiver, which in principal follows the same steps but without the need to draw

the intermediate graphs. Especially, the given algorithms are more suitable for a computer

implementation. The main ingredient we use are D(imer)- and respectively S(hiver)-chains.

These are chains of bi-fundamental fields which correspond to fundamental cells of the

dimer or respectively of the shiver.23

S-chains. A S-chain is constructed in the following way: Take an arbitrary bi-

fundamental field contained in a monomial of the superpotential as the first field in the

S-chain. The next field is the field right of it in the same monomial. If the field is the last

one in the monomial, take the first field of the monomial as the next field. Then jump to

the unique other monomial containing this field.24 Take the right field of it as the next one

23In fact, the fields need not necessarily be bi-fundamentals. For example, adjoint fields may occur in the

superpotential as well. However, one can interpret such fields as bi-fundamentals of the same group and

hence are sometimes referred to as bi-fundamentals.
24Since the quiver is assumed to be toric, each bi-fundamental can only occur twice and the jump to the

next monomial is uniquely determined.
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in the S-chain and again jump to the unique monomial containing also this field. Iterate

until the chain closes.25

Actually, a S-chain is nothing else than a zigzag path of the corresponding dimer.

In order to see this, let us translate the S-chain defining algorithm into the language

of the periodic quiver: Each monomial of the superpotential corresponds to a set of nodes

of the quiver connected by a closed path of arrows of one orientation (clockwise or anti-

clockwise). Hence, each monomial term can be seen as a closed cell with an orientation

given by the orientation of the arrows. Cells which are formed by a closed loop of clockwise

arrows we assign a positive sign and call them positive cells, while cells which are formed

by anti-clockwise arrows we assign a negative sign and denote them as negative cells.

The periodic quiver is constructed by gluing these cells together along the edges, i.e. bi-

fundamental fields, they have in common. Since each bi-fundamental field occurs in a toric

quiver exactly twice, once in a monomial with plus, and once in one with minus sign, the

gluing gives a totally periodic graph, there positive and negative cells alternate (the graph

dual is the dimer). The fact that our algorithm only visits two fields of a monomial, one

while entering the monomial, and one to exit to the next monomial, corresponds in the

periodic quiver to entering a cell and leaving it in the next step.26 Leaving a positive cell

corresponds to make a step right while leaving a negative cell corresponds to make a step

left. Since always cells of different sign are glued together, our algorithm actually follows

a zigzag path in the periodic quiver which under graph dualization goes over to a zigzag

path in the dimer.

Recalling the untwisting procedure of [22], we conclude that in order to obtain the

shiver we simply need to glue the S-chains at there common fields appropriately together.

Further, since an S-chain encircles a puncture in the shiver, it can also be identified as

the difference of two perfect matchings of the corresponding dimer (cf. [21, 27]).

As an illustrative example of this algorithm, consider the conifold. The superpotential

is given by

W = X
(1)
12 X

(1)
21 X

(2)
12 X

(2)
21 − X

(1)
12 X

(2)
21 X

(2)
12 X

(1)
21 . (A.1)

Using the S-chain algorithm, as depicted in figure 30, we obtain the following S-chains:

A : X
(1)
12 − X

(1)
21 ,

B : X
(1)
21 − X

(2)
12 ,

C : X
(2)
12 − X

(2)
21 ,

D : X
(2)
21 − X

(1)
12 .

(A.2)

Gluing them together yields the shiver illustrated in figure 18.

25Since a S-chain encloses a puncture in the mirror Riemannian surface, the number of S-chains equals

the number of punctures and further it can not intersect itself up to multiple windings.
26Actually, the meaning of entering and leaving a cell is a bit confusing since an edge always belongs to

two different cells. In fact, we mean by leaving a cell that the next edge followed is in a different cell, while

by entering we understand that the edge followed before belonged to another cell.
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X
(1)
12 X

(1)
21 X

(2)
12 X

(2)
21

− X
(1)
12 X

(2)
21 X

(2)
12 X

(1)
21

1.

2.

3.

4.

Figure 30: Illustration of the algorithm giving the S-chains for the conifold.

As another example, consider the Suspended Pinch Point (SPP) with superpotential

given by [54]

W = −X21X12X23X32 + X23Φ3X32 − X13Φ3X31 + X13X31X12X21, (A.3)

where Φ3 is an adjoint field.

We derive the following S-chains:

A : X21 − X12,

B : X23 − X32,

C : X13 − X31,

D : X12 − X23 − Φ3 − X31,

E : X32 − X21 − X13 − Φ3.

(A.4)

Gluing yields the shiver given in figure 23.

D-chains. A D-chain is defined as follows: Take an arbitrary bi-fundamental field in a

monomial of the superpotential as the first field in the D-chain. The next field is the field

right of it in the same monomial. If the field is the last one in the monomial, take the

first field of the monomial as the next field. Then jump to the unique other monomial

containing this field. Take the field left of it as the next field. If the field is the first one

in the monomial, take the last field of the monomial as the next field. Jump to the other

monomial containing this field and iterate until the chain closes.27

A D-chain encloses a face of the dimer.

Again, this can be most easily seen in the language of the periodic quiver. In contrast

to the S-chain algorithm, we change the orientation we follow once we enter a new cell,

since the algorithm alternates between taking the left or right one as the next field. Hence,

we simply collect the edges conneted to a single vertex in a clockwise or anti-clockwise

fashion. Thus, under graph dualization the D-chain goes over to a fundamental cell of the

dimer. Obviously, the number of D-chains equal the number of gauge groups.

The untwisting procedure then shows that the D-chain corresponds to a zigzag path

in the shiver.

27Care must be taken, since the D-chain may also possess self-intersections.
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X
(1)
12 X

(1)
21 X

(2)
12 X

(2)
21

− X
(1)
12 X

(2)
21 X

(2)
12 X

(1)
21

1.

2.

3.

4.

5.

6.

7.

8.

Figure 31: Illustration of the algorithm defining the D-chains applied to the conifold.

Note that the orientation of the zigzag paths is neither fixed in the dimer nor in the

shiver. Both algorithms work fine as well if one exchanges left and right. This is as

expected, since the orientation of zigzag paths in a bipartite graph is pure convention.

There is one potentially source of failure in both algorithms one must be aware of.

Namely, it is crucial that the fields in the monomials of the superpotential are in correct

order. This is clear since the fields are in general matrices which can not be permuted

freely. Note that this is something not always being taken care of in the superpotentials

which can be found in the literature.

As an example for this algorithm, the D-chain algorithm applied to the superpotential

of the conifold is depicted in figure 31. We obtain the following D-chains:

1 : X
(1)
21 − X

(2)
12 − X

(2)
21 − X

(1)
12 ,

2 : X
(1)
12 − X

(1)
21 − X

(2)
12 − X

(2)
21 .

(A.5)

Gluing them together yields the well known dimer illustrated in figure 1.

As another example, let us apply the D-chain algorithm to the SPP:

We obtain the following D-chains:

1 : X21 − X12 − X31 − X13,

2 : X12 − X23 − X32 − X21,

3 : X23 − X32 − Φ3 − X31 − X13 − Φ3.

(A.6)

Note that one of the D-chains possesses a self-intersection, implying that the respective

face in the dimer is glued to itself. The corresponding dimer is given in figure 10.

B. Mnemonics: orientifolded Harlequin diagrams

The purpose of this appendix is to introduce yet another practical point of view for orien-

tifold quotients, namely orientifolded versions of the Harlequin diagrams of the dimer. We

focus on orientifolds with fixed points. The resulting Harlequin diagrams live on a 2-sphere

with punctures.

Let us consider the Z2 symmetry which acts on the dimer torus with four fixed points.

Modding-out by this action gives a sphere with four singular points. The zigzag paths of
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*1

1

1

1
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(i) (ii) (iii)

Figure 32: (i) C3 tiling with zigzags. (ii) Orientifold tiling of the sphere. (iii) C3 orientifold

Harlequin diagram. The three open zigzags create a single loop.

the original dimer map to lines on this sphere. There are two possible types of zigzags in

the dimer graph:

• Closed zigzags which avoid the singular points. They map to closed lines on the

sphere with nontrivial homotopy between the four punctures.

• Open zigzags that pass through singular points. They occur when the orientifold is

lying on top of a bi-fundamental edge in the dimer diagram. In the vicinity of the

orientifold point a local complex z coordinate can be chosen for which the Z2 action

is z 7→ −z. Modding-out this action eliminates half of the zigzag that passes through

the origin. As a result such zigzags become open lines stretched between two singular

points on the sphere.

Let us apply these ideas to some concrete models. First, consider the simple example

of C
3. Figure 32 shows the three steps from the tiling to the sphere Harlequin diagram. C

3

has three zigzags, represented in blue, green and yellow lines. All of them cross orientifold

points, therefore they become open zigzags. Modding-out the involution gives (ii), with

the three zigzags ending on three singular loci. The tiling here is drawn with a grey vertex

to indicate that black and white nodes were mapped to one another. One can consider this

graph as a “tiling” of the sphere by one face which contains the fourth orientifold point.

The Harlequin diagram can be drawn on a plane, which gives (iii). The grey triangle

corresponds to the superpotential term in the orientifolded theory. The three lines are the

open zigzags. The (infinite) white face corresponds to the gauge group. In this case, the

group is SO/Sp depending on the charge of the fixed point in it.

In general, the orientifolded Harlequin diagram will contain open and closed zigzags.

Since zigzags come in pairs for every fixed point, we are left with a set of closed loops after

combining them. Whenever an open zigzag crosses a singular point it changes color (this

is for instance the case in figure 32, where the loop touches three orientifold points). After

drawing the zigzag lines, we can shade every other face. The shaded faces correspond to

superpotential terms. The remaining white faces are the gauge groups. Whenever there

is a fixed point in the middle of a white face, the corresponding gauge group is SO/Sp,

depending on the charge. Bifundamentals arise from intersections of lines. (Anti)symmetric
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**

* *

Figure 33: The conifold. The (infinite) white face contains no orientifold, and thus it corresponds

to a U(N) gauge group. The intersections of the four open zigzags give four (anti)symmetric fields

as listed in table 2.

***

*

**

*

*

(i) (ii)

Figure 34: (i)-(ii) Two different orientifolds of C
2/Z2 ×C. They correspond to figure 5 and figure

6, respectively.

*

*

*

*

Figure 35: C3/Z3. There are two white faces and one of them contains an orientifold. Thus,

the gauge group is SO/Sp × U . The matter content can also be read off from the diagram: three

bi-fundamentals from the intersections and three (anti)symmetric fields from the orientifolds as in

table 5.

fields are present whenever two zigzags touch at a singular point. Henceforth we follow

the convention that the infinite face is white. One can always draw the diagram in this

way. The sign parity of the configuration is simple equal to the number of shaded faces

modulo two (this is in agreement with the sign rule of section 3.1.1, which states that

the sign parity is equal to the parity of half the number of superpotential terms in the

parent theory). Anomaly cancellation can be ensured by adding extra chiral multiplets if

necessary.

We conclude by listing the orientifolded Harlequin diagrams for the examples in sec-

tion 3.2.3.
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**

* *

*

*

**

Figure 36: Left: The Suspended Pinch Point theory. We simply add one more loop to the C
3

diagram. Right: The L1,5,2 Harlequin diagram. There is a single loop which intersects itself six

times and crosses the four orientifold points.

NS’

NS’

NS

NS’

NS’

NS
NS

45

89 6

(i) (ii)

Figure 37: (i) L1,2,1 = the Suspended Pinch Point. (ii) L2,2,2 = conifold/Z2.

C. L
aba theories

In this appendix, we consider the generically singular Laba spaces.28 These are in the Labc

family for which explicit metrics are known [109, 110]. Probing a real cone over Laba spaces

with D3-branes gives interesting gauge theories [35, 20, 23]. The T-dual theory is an elliptic

model, i.e. Type IIA N = 1 Hanany-Witten setup [16] which contains a NS5-branes with

world-volume along 012345 and b NS5’-branes along 012389. D4-branes (along 01236) are

suspended between the five-branes. There are 2× (a + b) bi-fundamental fields. There are

also adjoints whenever two adjacent fivebranes are parallel. We have referred to these Type

IIA constructions extensively. In this appendix we explain how they can be translated into

harlequin and shiver diagrams, which can then be orientifolded following the rules we have

presented in the paper.

Figure 37 shows two simple examples.

Since we have been discussing orientifolds from the dimer point of view, the question

immediately arises: can this Type IIA picture be easily translated to the language of brane

tilings? The answer is yes. In order to show this, we work with Harlequin diagrams (of the

dimer). The simple rules for constructing the diagrams are the following:

• Start with an empty box for the fundamental cell of the tiling torus. In the following,

we heuristically identify the horizontal circular direction with x6 of the elliptic models.

28a and b are positive integers with a ≤ b.
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6x NS NS’ NS’

Figure 38: Constructing the Harlequin diagram (of the dimer) of SPP. (i) First step: a horizontal

blue line. (ii) Second step: adding NS and NS′ branes. (iii) Last step: another “horizontal” green

line which wraps the vertical cycle between two identical NS′-branes.

Figure 39: The Harlequin diagram and the tiling of SPP.

• Draw a horizontal line. We choose the convention that it is directed to the left.

• Draw vertical lines for the NS5-branes. The direction should be upward for NS and

downward for NS′ branes.

• Draw another horizontal line going to the right. It should go around the nontrivial

vertical torus cycle whenever two adjacent five-branes are parallel.

To illustrate our ideas, this is demonstrated for the SPP in figure 38. The resulting

tiling can be seen in figure 39.

Elliptic models can be orientifolded by including O6-planes. The Z2 symmetry acts

on the x6 direction and reduces it to an interval with two orientifold planes at the ends.

Several orientifolds from this class were constructed in [56 – 59]. There are two fixed points

on the x6 circle, which determine the horizontal coordinates of the fixed points in the

dimer diagram. As an example, we take the orientifold of SPP in figure 40. This has

been discussed in detail in [59] (see figure 3 there). The four fixed points in the tiling are

presented in figure 40. We immediately see that a and b are related to the O6-plane passing

through the NS-brane in figure 40. Similarly, c and d correspond to the O6 between the

two NS′-branes.

– 57 –



J
H
E
P
0
9
(
2
0
0
7
)
0
7
5

NS’

NS’

NS

O6

O6

NS NS’ NS’

*
b

c

d

a
**

*

Figure 40: Left: Orientifolding SPP. Right: Four fixed points in the Harlequin diagram.

6x

NS

NS

NS’

NS’

NS’

NS’

empty
empty

empty

empty

Figure 41: Shiver for a generic Laba. The diagram contains a + b “bubbles”.

Intuitively, the fork configuration corresponds to the case when we set opposite charges

for those orientifolds in the tiling which then become the same O6 in the Type IIA picture

after T-duality (i. e. they are at the same horizontal position).

Finally, we briefly describe an alternative perspective on these theories, given shivers in

the mirror. The toric diagram contains no internal points, and thus the Riemman surface

Σ0 of the mirror is a sphere. The azimuthal angle of this sphere can be identified with x6.

The shiver is an even sided polygon with double lines. It looks like a ring with “bubbles”

(see figure 41). There is one bubble for each NS and NS′ brane. The parity of the position

of the bubble on the polygon distinguishes between the two fivebranes. The conifold shiver

(figure 18) consists of two bubbles. On the other hand, the SPP shiver (figure 23) has three

bubbles and an empty place. Seiberg duality moves the bubbles around while keeping the

number of each type fixed. This nicely matches the Type IIA picture where the NS5-branes

are moving.

Orientifolding the shiver is relatively straightforward: the orientifold line cuts the ring

into two identical pieces. This can only be achieved if the bubbles are arranged via Seiberg

duality in a symmetric fashion. We leave the details to the interested reader.
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[45] G. Aldazabal, A. Font, L.E. Ibáñez and G. Violero, D = 4, N = 1, type-IIB orientifolds,

Nucl. Phys. B 536 (1998) 29 [hep-th/9804026].
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[75] M. Aganagic, A. Karch, D. Lüst and A. Miemiec, Mirror symmetries for brane

configurations and branes at singularities, Nucl. Phys. B 569 (2000) 277 [hep-th/9903093].

[76] A. Hanany and A. Iqbal, Quiver theories from d6-branes via mirror symmetry, JHEP 04

(2002) 009 [hep-th/0108137].

[77] B. Feng, A. Hanany, Y.H. He and A. Iqbal, Quiver theories, soliton spectra and

Picard-Lefschetz transformations, JHEP 02 (2003) 056 [hep-th/0206152].

[78] K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247.

[79] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222.

[80] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl.

Phys. B 504 (1997) 239 [hep-th/9704170].

[81] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) 5-branes, five dimensional field theories

and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116].

[82] N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91

[hep-th/9711013].

– 62 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C026004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C026004
http://arxiv.org/abs/hep-th/9807082
http://arxiv.org/abs/hep-th/0605097
http://jhep.sissa.it/stdsearch?paper=12%282006%29041
http://jhep.sissa.it/stdsearch?paper=12%282006%29041
http://arxiv.org/abs/hep-th/0609163
http://jhep.sissa.it/stdsearch?paper=06%282006%29031
http://arxiv.org/abs/hep-th/0604136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB542%2C139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB542%2C139
http://arxiv.org/abs/hep-th/9808161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB416%2C286
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB416%2C286
http://arxiv.org/abs/hep-th/9708134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB520%2C51
http://arxiv.org/abs/hep-th/9712193
http://jhep.sissa.it/stdsearch?paper=12%282002%29058
http://arxiv.org/abs/hep-th/0208014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB473%2C86
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB473%2C86
http://arxiv.org/abs/hep-th/9911190
http://jhep.sissa.it/stdsearch?paper=02%282001%29030
http://jhep.sissa.it/stdsearch?paper=02%282001%29030
http://arxiv.org/abs/hep-th/0012156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB577%2C73
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB577%2C73
http://arxiv.org/abs/hep-th/9910155
http://jhep.sissa.it/stdsearch?paper=06%282001%29065
http://arxiv.org/abs/hep-th/0103177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C251
http://arxiv.org/abs/hep-th/9703210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C277
http://arxiv.org/abs/hep-th/9903093
http://jhep.sissa.it/stdsearch?paper=04%282002%29009
http://jhep.sissa.it/stdsearch?paper=04%282002%29009
http://arxiv.org/abs/hep-th/0108137
http://jhep.sissa.it/stdsearch?paper=02%282003%29056
http://arxiv.org/abs/hep-th/0206152
http://arxiv.org/abs/hep-th/0005247
http://arxiv.org/abs/hep-th/0002222
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C239
http://arxiv.org/abs/hep-th/9704170
http://jhep.sissa.it/stdsearch?paper=01%281998%29002
http://arxiv.org/abs/hep-th/9710116
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C91
http://arxiv.org/abs/hep-th/9711013


J
H
E
P
0
9
(
2
0
0
7
)
0
7
5

[83] G. Mikhalkin, Amoebas of algebraic varieties, math.AG/0108225.

[84] A.M. Uranga, Chiral four-dimensional string compactifications with intersecting D-branes,

Class. and Quant. Grav. 20 (2003) 373 [hep-th/0301032].
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